K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2018

sao nhiều v bạn

15 tháng 1 2017

A B C H I E D

ta có \(\widehat{ABH}+\widehat{HAB}=90^o\)( tam giác HAB vuông tại H )

và \(\widehat{HAB}+\widehat{HAC}=90^o\left(gt\right)\)

suy ra \(\widehat{ABH}=\widehat{HAC}\)( vì cùng phụ với HAB )

b)    xét \(\Delta IAH \)và \(\Delta ICE\)

IA = IC (gt)

IH =IE (gt)

góc HIA = góc EIC ( đối đỉnh )

do đó \(\Delta IAH=\Delta ICE\left(c.g.c\right)\)

suy ra AH = EC ( 2 cạnh tương ứng )

và \(\widehat{HAI}=\widehat{ECA}\)(2 góc tương ứng )

xét \(\Delta HAC\)và \(\Delta ECA\)

AH = EC (cmt)

góc HAI = góc ECA (cmt)

AC là cạnh chung

do đó \(\Delta HAC=\Delta ECA\left(c.g.c\right)\)

suy ra \(\widehat{AHC}=\widehat{CEA}\)(2 góc tương ứng)

mà \(\widehat{AHC}=90^o\Rightarrow\widehat{CEA}=90^o\)

hay \(CE⊥AE\)

12 tháng 2 2021

A B C H D E 1 1 2 2 3

sai: tia p/giác của góc HAC cắt AC tại D -> sửa AC thành BC

tự viết gt, kl

CM: Ta có: BE = BH (gt) => t/giác BEH cân tại B => \(\widehat{H_2}=\frac{180^0-\widehat{B}}{2}\)

Do đó: \(\widehat{H_1}=90^0-\widehat{H_2}=90^0-\frac{180^0-\widehat{B}}{2}=\frac{180-180^0+\widehat{B}}{2}=\frac{\widehat{B}}{2}\)(1)

Mặt khác : \(\widehat{HAC}=\widehat{B}\)(vì cùng phụ với \(\widehat{A_2}\))

Vì AD là p/giác của \(\widehat{HAC}\)

=> \(\widehat{A_1}=\widehat{A_3}=\frac{\widehat{HAC}}{2}=\frac{\widehat{B}}{2}\)(2) 

Từ (1) và (2) => \(\widehat{A_1}=\widehat{H_1}\)

Mà 2 góc này ở vị trí so le trong

=> EH // AD