Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H I E D
ta có \(\widehat{ABH}+\widehat{HAB}=90^o\)( tam giác HAB vuông tại H )
và \(\widehat{HAB}+\widehat{HAC}=90^o\left(gt\right)\)
suy ra \(\widehat{ABH}=\widehat{HAC}\)( vì cùng phụ với HAB )
b) xét \(\Delta IAH \)và \(\Delta ICE\)có
IA = IC (gt)
IH =IE (gt)
góc HIA = góc EIC ( đối đỉnh )
do đó \(\Delta IAH=\Delta ICE\left(c.g.c\right)\)
suy ra AH = EC ( 2 cạnh tương ứng )
và \(\widehat{HAI}=\widehat{ECA}\)(2 góc tương ứng )
xét \(\Delta HAC\)và \(\Delta ECA\)có
AH = EC (cmt)
góc HAI = góc ECA (cmt)
AC là cạnh chung
do đó \(\Delta HAC=\Delta ECA\left(c.g.c\right)\)
suy ra \(\widehat{AHC}=\widehat{CEA}\)(2 góc tương ứng)
mà \(\widehat{AHC}=90^o\Rightarrow\widehat{CEA}=90^o\)
hay \(CE⊥AE\)
A B C H D E 1 1 2 2 3
sai: tia p/giác của góc HAC cắt AC tại D -> sửa AC thành BC
tự viết gt, kl
CM: Ta có: BE = BH (gt) => t/giác BEH cân tại B => \(\widehat{H_2}=\frac{180^0-\widehat{B}}{2}\)
Do đó: \(\widehat{H_1}=90^0-\widehat{H_2}=90^0-\frac{180^0-\widehat{B}}{2}=\frac{180-180^0+\widehat{B}}{2}=\frac{\widehat{B}}{2}\)(1)
Mặt khác : \(\widehat{HAC}=\widehat{B}\)(vì cùng phụ với \(\widehat{A_2}\))
Vì AD là p/giác của \(\widehat{HAC}\)
=> \(\widehat{A_1}=\widehat{A_3}=\frac{\widehat{HAC}}{2}=\frac{\widehat{B}}{2}\)(2)
Từ (1) và (2) => \(\widehat{A_1}=\widehat{H_1}\)
Mà 2 góc này ở vị trí so le trong
=> EH // AD
Mọi người giúp em với ạ!!!