Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: N, P lần lượt là trung điểm của CA; CB
=> NP là đường trung bình của tam giác CAB với đáy AB
=> NP // = 1212AB (1)
mà M là trung điểm AB => AM = MB = 1212AB (2)
Từ (1); (2) => NP // = MB
=> BMNP là hình bình hành.
b. Từ (1) ; (2) => AMPN là hình bình hành
mà hbh AMPN có 1 góc vg nên => AMPN là hình chữ nhật
Xét ΔBCA có
N là trung điểm của AC
P là trung điểm của BC
Do đó: NP là đường trung bình của ΔBCA
Suy ra: NP//MB và NP=MB
hay BMNP là hình bình hành
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
hay BMNC là hình thang
Bài làm
a) Xét tứ giác MBPA có:
N là trung điểm AB ( gt )
N là trung điểm của MP ( Do P đối vứng với M qua N )
=> Tứ giác MBPA là hình bình hành.
b) Vì tứ giác MBPA là hình bình hành
=> AP // MB ( hai cạnh đối ) => AP // CM
=> AP = MB ( hai cạnh đối )
Mà MB = CM ( Do M là trung điểm CB )
=> AP = CM
Xét tứ giác PACM có:
AP // CM ( cmt )
AP = CM ( cmt )
=> Tứ giác PACM là hình bình hành
Mà \(\widehat{ACB}=90^0\)
=> Tứ giác PACM là hình chữ nhật.
c) Gọi giao điểm của QC và AM là I
Xét tam giác BCQ có:
M là trung điểm BC
MI // QB
=> MI là đường trung bình
=> MI = 1/2 BQ (1)
Vì PB // AM ( Do MBPA là hình bình hành )
=> PQ // MI
=> \(\widehat{QPN}=\widehat{NMI}\)( Hai góc so le trong )
Xét tam giác QPN và tam giác IMN có
\(\widehat{QPN}=\widehat{NMI}\)( cmt )
PN = MN ( cmt )
\(\widehat{QNP}=\widehat{MNI}\)( hai góc đối đỉnh )
=> Tam giác QPN = tam giác IMN ( g.c.g )
=> MI = PQ (2)
Từ (1) và (2) => PQ = 1/2 BQ => BQ = 2PQ ( đpcm )
A B C M D Q P N
a.Vì N là trung điểm PM, AB
\(\Rightarrow MBPA\) là hình bình hành
b ) Từ câu a ) \(\Rightarrow PQ=BM=MC\) vì M là trung điểm BC
\(PA//BM\Rightarrow PA//MC\)
\(\Rightarrow APMC\) là hình bình hành
Mà \(AC\perp BC\Rightarrow PACM\) là hình chữ nhật
c.Gọi D là trung điểm BQ \(\Rightarrow BD=DQ\)
\(\Rightarrow DM\) là đường trung bình \(\Delta BCQ\Rightarrow DM//CQ\Rightarrow DM//QN\)
Mà N là trung điểm PM
=> Q là trung điểm PD
\(\Rightarrow QP=QD\Rightarrow QP=QD=DB\Rightarrow BQ=2PQ\)
d.Để PACM là hình vuông
\(\Rightarrow AC=CM\Rightarrow AC=\frac{1}{2}BC\)
a) Ta có: N, P lần lượt là trung điểm của CA; CB
=> NP là đường trung bình của tam giác CAB với đáy AB
=> NP // = 1212AB (1)
mà M là trung điểm AB => AM = MB = 1212AB (2)
Từ (1); (2) => NP // = MB
=> BMNP là hình bình hành.
b. Từ (1) ; (2) => AMPN là hình bình hành
mà hbh AMPN có 1 góc vg nên => AMPN là hình chữ nhật
Do MD\(\perp\)AB tại D =)\(\widehat{A\text{D}M}\)=900
Do ME\(\perp\)AC tại E =)\(\widehat{A\text{E}M}\)=900
Do tam giác ABC vuông tại A =) \(\widehat{BAC}\)=900
Xét tứ giác ADME có:
\(\widehat{A\text{D}M}\)=\(\widehat{A\text{E}M}\)=\(\widehat{BAC}\) ( vì cùng bằng 900)
=) ADME là hình chữ nhật
Xét tam giác ABC có :
M là trung điểm của BC
MD // AC
=) D là trung điểm của AB
Xét tam giác ABC có :
M là trung điểm của BC
ME // AB
=) E là trung điểm của AC
Xét tam giác ABC có :
D là trung điểm của AB
E là trung điểm của AC
=) DE là đường trung bình của tam giác ABC
=) DE //BC =) DE //BM (1)
Và DE= \(\frac{BC}{2}\)=BM=CM (vì M là trung điểm của BC ) (2)
Từ (1) và (2) =) BDEM là hình bình hành
a) Ta có: N, P lần lượt là trung điểm của CA; CB
=> NP là đường trung bình của tam giác CAB với đáy AB
=> NP // = \(\frac{1}{2}\)AB (1)
mà M là trung điểm AB => AM = MB = \(\frac{1}{2}\)AB (2)
Từ (1); (2) => NP // = MB
=> BMNP là hình bình hành.
b. Từ (1) ; (2) => AMPN là hình bình hành
mà ^NAM = ^CAB = 1v
=> AMMPN là hình chữ nhật
( chú ý 1v là 1 vuông = góc 90 độ )
a) Ta có: N, P lần lượt là trung điểm của CA; CB
=> NP là đường trung bình của tam giác CAB với đáy AB
=> NP // = 1212AB (1)
mà M là trung điểm AB => AM = MB = 1212AB (2)
Từ (1); (2) => NP // = MB
=> BMNP là hình bình hành.
b. Từ (1) ; (2) => AMPN là hình bình hành
mà hbh AMPN có 1 góc vg nên => AMPN là hình chữ nhật