Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tu ve hinh nha
XÉT TAM GIÁC MAB VÀ TAM GIÁC MEC CO:
BM=CM( M LÀ TRUNG ĐIỂM CỦA BC)
GÓC BMA = GÓC CME( 2 GÓC ĐỐI ĐỈNH)
AM=EM(GT)
=>TAM GIÁC MAB = TAM GIÁC MEC( C-G-C)
a) Xét \(\Delta MAB\)và \(\Delta MEC\)có:
MB = MC (M là trung điểm của BC)
\(\widehat{AMB}=\widehat{CME}\)(2 góc đối đỉnh)
MA = ME (gt)
\(\Rightarrow\Delta MAB=\Delta MEC\left(c-g-c\right)\)
b) Ta có: \(\Delta MAB=\Delta MEC\)(theo a)
\(\Rightarrow\widehat{MAB}=\widehat{MEC}\)(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow EC//AB\)
\(\Rightarrow\widehat{ECA}+\widehat{CAB}=180^o\)(2 góc trong cùng phía)
\(\Rightarrow\widehat{ECA}+90^o=180^o\)
\(\Rightarrow\widehat{ECA}=90^o\Rightarrow EC\perp AC\)
c) Ta có: \(\Delta MAB=\Delta MEC\)(theo a)
\(\Rightarrow AB=EC\)(2 cạnh tương ứng)
Xét \(\Delta CME\)và \(\Delta AMB\)có:
ME = MA (gt)
\(\widehat{CME}=\widehat{AMB}\)(2 góc đối đỉnh)
EC = AB (cmt)
=> \(\Delta CME=\Delta AMB\left(c-g-c\right)\)
\(\Rightarrow CM=AM\)(2 cạnh tương ứng)
Mà BC = 2.CM
=> BC = 2.AM (đpcm)
b: Xét ΔMAB và ΔMEC có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)
MB=MC
Do đó: ΔMAB=ΔMEC
a) Xét \(\Delta AMBva\Delta AMC\) có
\(\hept{\begin{cases}AB=AC\left(gt\right)\\chungAM\\\widehat{BAM}=\widehat{MAC}\left(gt\right)\end{cases}\Rightarrow\Delta ABM=\Delta ACM\left(c-g-c\right)\left(ĐPCM\right)}\)
b) từ 2 tam giác trên = nhau =>BM=CM
xét tam giác BAM và tam giác CEM có
\(\hept{\begin{cases}BM=CM\left(cmt\right)\\AM=ME\left(gt\right)\\\widehat{BMA}=\widehat{EMC}\left(đoi-đinh\right)\end{cases}}\Rightarrow\Delta AMB=\Delta EMC\left(c-g-c\right)\Rightarrow\widehat{BAM}=\widehat{MEC}\left(ĐPCM\right)\)
c) từ hai góc trên = nhau, mà 2 góc đó ở vị trí so le trong =>AB//CE => AK vuông góc với CE => tam giác ACK vuông tại K