Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
A B C D F E
a) Tam giác ABC vuông tại A (góc A = 90 độ)
Áp dụng định lý Pytago, ta có: \(AB^2+AC^2=9^2+12^2=BC^2\)
\(\Rightarrow BC=\sqrt{225}=15\) (Cm)
Áp dụng tính chất tia phân giác, ta có:
\(\frac{BD}{AB}=\frac{CD}{AC}=\frac{BD+CD}{AB+AC}=\frac{BC}{AB+AC}=\frac{15}{9+12}=\frac{5}{7}\)
\(\Rightarrow BD=\frac{5}{7}\times9=\frac{45}{7}\) (Cm)
\(CD=\frac{5}{7}\times12=\frac{60}{7}\) (Cm)
a,1+15cm=.....
b,15+9+1+.....=.....
c.15*4+9+9+9+9=......
BÀI 1:
a)
· Trong ∆ ABC, có: AB2= BC.BH
Hay BC= =
· Xét ∆ ABC vuông tại A, có:
AB2= BH2+AH2
↔AH2= AB2 – BH2
↔AH= =4 (cm)
b)
· Ta có: HC=BC-BH
àHC= 8.3 - 3= 5.3 (cm)
· Trong ∆ AHC, có:
·
Bài 1:
A B C H E
a) Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)
\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)
Áp dụng Pytago ta có:
\(AH^2+BH^2=AB^2\)
\(\Rightarrow\)\(AH^2=AB^2-BH^2\)
\(\Rightarrow\)\(AH^2=5^2-3^2=16\)
\(\Rightarrow\)\(AH=4\)
b) \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)
Áp dụng hệ thức lượng ta có:
\(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)
\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)
\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)
\(\Rightarrow\)\(HE=\frac{16}{5}\)
a: ΔACI vuông tại I
=>\(IA^2+IC^2=AC^2\)
=>\(IC^2=15^2-12^2=81\)
=>IC=9(cm)
Xét ΔCAB vuông tại A có AI là đường cao
nên \(CA^2=CI\cdot CB\)
=>CB=15^2/9=25(cm)
CI+IB=CB
=>IB+9=25
=>IB=16cm
ΔIAB vuông tại I
=>\(IA^2+IB^2=AB^2\)
=>\(AB^2=12^2+16^2=400\)
=>AB=20(cm)
b: Xét tứ giác AKIE có
\(\widehat{AKI}=\widehat{AEI}=\widehat{KAE}=90^0\)
Do đó: AKIE là hình chữ nhật
=>AI=KE
=>KE=12(cm)