Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H D E I F K
1/
\(BC=\sqrt{AB^2+AC^2}\) (Pitago)
\(\Rightarrow BC=\sqrt{3^2+4^2}=5cm\)
\(AB^2=HB.BC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{3^2}{5}=1,8cm\)
Xét tg vuông AHB có
\(HA=\sqrt{AB^2-HB^2}\) (Pitago)
\(\Rightarrow HA=\sqrt{3^2-1,8^2}=2,4cm\)
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{3}{5}\)
2/
Xét tg vuông AHC và tg vuông DHC có
HC chung
HA=HD (đường thẳng đi qua tâm đường tròn và vuông góc với dây cung thì chia đôi dây cung)
=> tg AQHC = tg DHC (Hai tg vuông có 2 cạnh góc vuông tương ứng bằng nhau) => AC=DC
Xét tg ABC và tg DBC có
AC=DC (cmt)
BC chung
BA=BD (bán kính (B))
=> tg ABC = tg DBC (c.c.c) \(\Rightarrow\widehat{BAC}=\widehat{BDC}=90^o\)
=> A và D cùng nhìn BC dưới hai góc bằng nhau \(=90^o\) => A và D cùng nằm trên đường tròn đường kính BC hay A; B; C; D cùng nằm trên 1 đường tròn
3/
\(\widehat{EAD}=90^o\) (góc nt chắn nửa đường tròn) \(\Rightarrow DA\perp EF\) (1)
\(BF\perp DE\) (gt) (2)
Từ (1) và (2) => I là trực tâm của tg DEF
\(\Rightarrow EK\perp DF\) (trong tg 3 đường cao đồng quy tại 1 điểm)
Gọi K' là giao của DF với (B) \(\Rightarrow\widehat{EK'F}=90^o\) (góc nt chắn nửa đường tròn) \(\Rightarrow EK'\perp DF\)
Như vậy từ E có 2 đường thẳng cùng vuông góc với DF => vô lý (Từ 1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 đường thẳng vuông góc với đường thẳng đã cho) => K trùng K' => K thuộc đường tròn (B)
Xét tg ABK có
BA=BK (bán kính (B)) => tg ABK cân tại B \(\Rightarrow\widehat{BAK}=\widehat{BKA}\) (góc ở đáy tg cân)
A H B C M I D K F P Q G Note:Hình hơi lệch xíu ^^
a, Vì CM là tiếp tuyến của (A)
=> \(CM\perp AM\)
=> ^CMA = 90o
=> M thuộc đường tròn đường kính AC
Vì ^CHA = 90o
=> H thuộc đường tròn đường kính AC
Do đó : M và H cùng thuộc đường tròn đường kính AC
hay 4 điểm A,C,M,H cùng thuộc đường tròn đường kính AC
b, Vì AM = AH ( Bán kính)
CM = CH (tiếp tuyến)
=> AC là trung trực MH
=> \(AC\perp MH\)tại I
Xét \(\Delta\)AMC vuông tại M có MI là đường cao
\(\Rightarrow MA^2=AI.AC\)(Hệ thức lượng)
c, Vì CM , CH là tiếp tuyến của (A)
=> AC là phân giác ^HAM
=> ^HAC = ^MAC
Mà ^HAC + ^HAB = 90o
=> ^MAC + ^HAB = 90o
Ta có: ^BAD + ^BAC + ^CAM = 180o (Kề bù)
=> ^BAD + 90o + ^CAM = 180o
=> ^BAD + ^CAM = 90o
Do đó ^BAD = ^BAH (Cùng phụ ^CAM)
Xét \(\Delta\)BAD và \(\Delta\)BAH có:
AB chung
^BAD = ^BAH (cmt)
AD = AH (Bán kính (A) )
=> \(\Delta BAD=\Delta BAH\left(c.g.c\right)\)
=> ^ADB = ^AHB = 90o
\(\Rightarrow BD\perp AD\)
=> BD là tiếp tuyến của (A)
Làm đc đến đây thôi :(
A B C D E K M I H F
a) Ta thấy ngay do BD, CE là đường cao nên \(\widehat{BEC}=\widehat{BDC}=90^o\)
Xét tứ giác AEDC có \(\widehat{BEC}=\widehat{BDC}=90^o\) nên AEDC là tứ giác nội tiếp hay A, E, D, C cùng thuộc một đường tròn.
Đường tròn cần tìm là đường tròn đường kính BC, tức là tâm đường tròn là trung điểm J của BC, bán kính là JB.
b) Xét tam giác BEC và tam giác BHM có :
\(\widehat{BEC}=\widehat{BHM}=90^o\)
Góc B chung
\(\Rightarrow\Delta BEC\sim\Delta BHM\left(g-g\right)\)
\(\Rightarrow\frac{BE}{BH}=\frac{BC}{BM}\Rightarrow BC.BH=BE.BM\)
Ta có \(BK^2=BD^2=BH.BC=BE.EM\) mà \(KE\perp BM\Rightarrow\widehat{BKM}=90^o\)
Vậy MK là tiếp tuyến của đường tròn tâm B.
c)
Gọi F là giao điểm của CE với đường tròn tâm B.
Do \(BE\perp KF\)nên MB là trung trực của FK.
\(\Rightarrow\widehat{MFB}=\widehat{MKB}=90^o\Rightarrow\)tứ giác MFBH nội tiếp.
\(\Rightarrow\widehat{MHF}=\widehat{MBF}\) (Hai góc nội tiếp cùng chắn cung MF)
Ta cũng có MKHB nội tiếp nên \(\widehat{MHK}=\widehat{MBK}\)
Mà \(\widehat{MBF}=\widehat{MBK}\) nên HI là phân giác góc KHF.
Áp dụng tính chất tia phân giác ta có : \(\frac{IK}{IF}=\frac{HK}{HF}\)
Ta có \(HC\perp HI\) nên HC là tia phân giác ngoài của góc KHF.
\(\Rightarrow\frac{CK}{CF}=\frac{HK}{HF}\)
Vậy nên \(\frac{CK}{CF}=\frac{IK}{IF}\)
\(\Rightarrow\frac{CK}{CF+KF}=\frac{IK}{IF+IK}\Rightarrow\frac{CK}{\left(CE+EF\right)+\left(CE-KE\right)}=\frac{IK}{FK}\)
\(\Rightarrow\frac{CK}{2CE}=\frac{IK}{2EK}\Rightarrow CK.EK=CE.IK\)
a: Xét tứ giác ODAE có
góc ODA+góc OEA=180 độ
=>ODAE là tứ giác nội tiếp
b: \(AE=\sqrt{\left(3R\right)^2-R^2}=2\sqrt{2}\cdot R\)
\(OI=\dfrac{OE^2}{OA}=\dfrac{R^2}{3R}=\dfrac{R}{3}\)
c: Xét ΔDIK vuông tại I và ΔDHE vuông tại H có
góc IDK chung
=>ΔDIK đồng dạng vơi ΔDHE
=>DI/DH=DK/DE
=>DH*DK=DI*DE=2*IE^2
1: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4(cm)
BH=3^2/5=1,8cm
CH=5-1,8=3,2cm
Xet ΔABC vuông tại A có sin C=AB/BC=3/5
nên góc C=37 độ
2: ΔBAD cân tại B
mà BH là đường cao
nên BH là phân giác của góc ABD
Xet ΔABC và ΔDBC co
BA=BD
góc ABC=góc DBC
BC chung
Do đó: ΔABC=ΔDBC
=>góc BDC=90 độ
=>CD là tiếp tuyến của (B)
Cậu tự vẽ hình nhé
a) Xét △ABC vuông tại A, có đường cao AH
BC2=AB2 + AC2 (pytago)
BC2= 32 + 42
BC2 = \(\sqrt{9+16}\)
BC =5
Xét △ABC vuông tại A
AC2= BC x BH
42=5 x BH
BH= 16 : 5
BH = 3,2
Xét △ ABC vuông tại A
AB x AC = BC x AH
3 x 4 = 5 x AH
AH =12 :5
AH= 2,4Xét △ABC vuông tại A ta có:Sin C = \(\dfrac{AB}{BC}\)
Sin C = \(\dfrac{3}{5}\)
➩ góc C = 37o
b) △BAD cân tại B
➩BH là đường cao
➩BH là phân giác của \(\widehat{ABD}\)
Xét △ ABC và △ BDC ta có:
➜ BA= BD
\(\widehat{ABC}\) =\(\widehat{BDC}\)
BC chung
➩△ABC = △BDC
➩ CD là t/t của B