K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2018

a)  Xét   \(\Delta HAC\)và   \(\Delta HBA\)  có:

\(\widehat{AHC}=\widehat{BHA}=90^0\)

\(\widehat{HAC}=\widehat{HBA}\)  cùng phụ với  \(\widehat{HAB}\)

suy ra:    \(\Delta HAC~\Delta HBA\)

\(\Rightarrow\)\(\frac{AH}{HB}=\frac{HC}{AH}\)

\(\Rightarrow\)\(AH^2=HB.HC\)

24 tháng 4 2017

a, HA^2=HB.HC

Xet tg AHB va tg AHC

Có: H chung

Va góc HCA= góc ABH ( phụ với Â)

=>Tam giác AHB đồng dạng tam giác AHC

=> AH/BH=HC/AH

=>đpcm

b, Ta có: AH/BH=HC/AH

=>AH^2=BH.HC

=>AH^2=144

=>AH=12

*Tính AC

Áp dụng định lý Pi-ta-go:

AC^2=AH^2+HC^2

AC^2=144+256

AC=20cm

*Tính AB

Áp dụng định lý Pi-ta-go:

AB^2=BH^2+AH^2

AB^2=81+144

AB^2=225

AB=15cm

3: 

\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

HB=12^2/20=7,2cm

=>HC=20-7,2=12,8cm

\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)

\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)

7 tháng 5 2023

loading...loading...

Do là mình chưa đọc kĩ đề nên là vẽ cạnh BH và CH nó bị sai tỉ lệ, bạn nên vẽ cạnh AC dài ra để hai cạnh đó đúng tỉ lệ nha.

16 tháng 4 2018

a) Xét tam giác ABC và tam giác HBA có:

\(\widehat{BAC}=\widehat{BHA}=90^o\)

Góc B chung

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right)\)

b) 

Xét tam giác ABC và tam giác HAC có:

\(\widehat{BAC}=\widehat{AHC}=90^o\)

Góc C chung

\(\Rightarrow\Delta ABC\sim\Delta HAC\left(g-g\right)\)

c) Từ câu a và b ta có : \(\Delta HBA\sim\Delta HAC\)

\(\Rightarrow\frac{HB}{HA}=\frac{HA}{HC}\Rightarrow HA^2=HB.HC=9.16=144\)

\(\Rightarrow HA=12\left(cm\right)\)

Khi đó áp dụng định lý Pi-ta-go ta có:

\(AB^2=BH^2+AH^2=9^2+12^2\Rightarrow AB=15\left(cm\right)\)

\(AC^2=CH^2+AH^2=16^2+12^2\Rightarrow AC=20\left(cm\right)\)

BC = BH + HC = 9 + 16 = 25 (cm)

Áp dụng tính chất tia phân giác trong tam giác ta có:

\(\frac{AE}{EC}=\frac{AB}{BC}=\frac{15}{25}=\frac{3}{5}\)

\(\Rightarrow AE=\frac{3}{8}\times20=7,5\left(cm\right)\)

\(\Rightarrow EC=20-7,5=12,5\left(cm\right)\)

AH
Akai Haruma
Giáo viên
7 tháng 8 2019

Lời giải:
a)

Xét tam giác $BHA$ và $AHC$ có:

\(\widehat{BHA}=\widehat{AHC}=90^0\)

\(\widehat{HBA}=\widehat{HAC}(=90^0-\widehat{BAH})\)

\(\Rightarrow \triangle BHA\sim \triangle AHC(g.g)\Rightarrow \frac{BH}{AH}=\frac{HA}{HC}\)

\(\Rightarrow AH^2=BH.CH\)

Ta có đpcm.

b)

Từ kết quả phần a suy ra \(AH^2=HB.HC=9.16\Rightarrow AH=12\) (cm)

Áp dụng định lý Pitago cho tam giác vuông $AHB, AHC$:

\(BA=\sqrt{HA^2+BH^2}=\sqrt{12^2+9^2}=15\) (cm)

\(CA=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20\) (cm)

\(BC=HB+HC=9+16=25\) (cm)

AH
Akai Haruma
Giáo viên
7 tháng 8 2019

Hình vẽ:
Ôn tập cuối năm phần hình học

27 tháng 12 2018

Với BH = 9cm, HC = 16cm => BC  = BH + HC = 9 + 16 = 25 cm

Ta có: A H 2 = HB.HC (cmt)

=> A H 2 = 9.16 = 144 => AH = 12cm

Nên diện tích tam giác ABC là   S A B C = 1 2 .AH.BC = 1 2 .12.25 = 150 c m 2

Đáp án: C