Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo tại đây nhé.
Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath
a: Vì D và M đối xứng nhau qua AB
nên AB là đường trung trựccủa DM
=>AB vuông góc với DM và AD=AM
=>ΔADM cân tại A
=>AB là phân giác của góc DAM(1)
Vì D và N đối xứng nhau qua AC
nên AC là trung trực của DN
=>AC vuông góc với DN và AD=AN
=>ΔADN cân tại A
=>AC là phân giác của góc DAN(2)
Xét tứ giác AEDF có góc AED=góc AFD=góc FAE=90 độ
nên AEDF là hình chữ nhật
b: Từ (1) và (2) suy ra góc MAN=2*90=180 độ
=>M,A,N thẳng hàng
mà MA=AN
nên A là trung điểm của MN
c: Xét ΔADB và ΔAMB có
AD=AM
góc DAB=góc MAB
AB chung
Do đó: ΔADB=ΔAMB
=>góc AMB=90 độ
=>BM vuông góc với MN(3)
Xét ΔADC và ΔANC có
AD=AN
góc DAC=góc NAC
AC chung
Do đó: ΔADC=ΔANC
=>góc ADC=góc ANC=90 độ
=>CN vuông góc với NM(4)
Từ (3) và (4) suy ra BMNC là hình thang vuông
Bài 1:
A B C D M N P Q E F
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
CMR: a^5 - a chia hết cho 30 với mọi số nguyên a