K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a.

Chứng minh ΔCHO=ΔCFOΔCHO=ΔCFO (cạnh huyền – góc nhọn)

suy ra: CH = CF. Kết luận ΔFCHΔFCH cân tại C.

- Vẽ IG //AC (G ∈∈ FH). Chứng minh ΔFIGΔFIG cân tại I.

- Suy ra: AH = IG, và ∠IGK=∠AHK∠IGK=∠AHK.

- Chứng minh ΔAHK=ΔIGKΔAHK=ΔIGK (g-c-g).

- Suy ra AK = KI..

b.

Vẽ OE ⊥⊥ AB tại E. Tương tự câu a ta có: ΔAEH,ΔBEFΔAEH,ΔBEF thứ tự cân tại A, B. Suy ra: BE = BF và AE = AH.

BA = BE + EA = BF + AH = BF + FI = BI. Suy ra: ΔABIΔABI cân tại B.

Mà BO là phân giác góc B, và BK là đường trung tuyến của ΔABIΔABI nên: B, O, K là ba điểm thẳng hàng.

4 tháng 2 2019

bài 2b.

\(\left|x-y\right|+\left|y-z\right|+\left|z-x\right|=2019\)

\(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-x\right|+\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=2019\)

\(\Rightarrow\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-x\right|+z-x=2019\)

Với \(a< 0\left(a\in Z\right)\)ta có:\(\left|a\right|+a=-a+a=0⋮2\)

Với \(a=0\)ta có:\(\left|a\right|+a=0⋮2\)

Với \(a>0\)ta có:\(\left|a\right|+a=2a⋮2\)

Vậy với mọi số nguyên a thì ta luôn có:\(\left|a\right|+a⋮2\)

Áp dụng vào bài toán,ta được:\(\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-x\right|+z-x⋮2\)

\(\Rightarrow2019⋮2\)(vô lý)

Vậy không thể tồn tại số nguyên x,y,z thỏa mãn:\(\left|x-y\right|+\left|y-z\right|+\left|z-x\right|=2019\)

30 tháng 4 2018

3/

Ta có 3 là nghiệm của P (y)

=> P (3) = 0

=> \(9m-3=0\)

=> \(9m=3\)

=> m = 3

Vậy khi m = 3 thì 3 là nghiệm của P (y).

17 tháng 10 2016

a) xét tam giác ABM và tam giác ADM có

   BM=MD

   cạnh AM chung

  AB=AD

=> 2 tam giác bằng nhau (c.c.c)

=> góc AMD= góc AMB =90độ

b) xét tam giác BMK và tam giác DMK có

BM=MD

góc DMK= góc BMK

cạnh MK chung

=> 2 tam giác bằng nhau (c.g.c)

=> BK=KD

c)vì góc C=40 độ ; góc B = 60 độ => góc A = 80 độ

vì AB = AD => tam giác ABD cân tại A

=> góc ABD = góc ADB =(180 - 80) : 2 = 50 độ

=> góc DBK = 60 - 50 = 10 độ

vì tam giác KBM = tam giác DKM => BK = KD => tam giác BDK cân tại K 

=> góc KBD = góc KDB = 10 độ

áp dụng tính chất góc ngoài của tam giác vào tam giác BKD => góc DKC = 10 + 10 = 20 độ

17 tháng 10 2016

a) Xét tam giác AMB và tam giác ABD có:

         AM là cạnh chung   

        AB=AD (gt)

       BM=MD(vì M là trung điểm của BD )

Do đó tam giác AMB=tam giác ABD (C-C-C)

b) Ta có : góc AMD =góc BMK (2 góc đối đỉnh)

              góc AMB= góc DMK(2 góc đối đỉnh)     

     Mà góc AMB= góc AMD( tam giác AMB=tam giác AMD)

Suy ra góc BMK = góc DMK

            Xét tam giác BMK và tam giác DMK có:   

                  BM=MD(M là trung điếm của BD)

                  MK là cạnh chung 

                  góc BMK =góc DMK(Chứng minh trên)

         Do đó tam giác BMK=tam giác DMK (C-G-C)

             Suy ra KB=KD(2 cạnh tương ứng)

c) TỰ LÀM NHÉ !       

22 tháng 12 2018

a, Xét tam giác ABM và tam giác CBM có 

MB chung 

MA = MC (gt) 

AB = BC (gt) 

=> tam giác ABM = tam giác CBM (c.c.c)

b , Xét tam giác NMC và tam giác EMA có :

Góc NMC = Góc EMA ( 2 góc đối đỉnh )

MN = ME (gt) 

MC = MA (gt)

=> tam giác NMC = tam giác EMA (c.g.c)

=> CN = AE ( 2 cạnh t/ứ)

c, Vì tam giác ABC cân tại B ( AB = BC) 

Nên Góc A = góc C = 45o

Xét tam giác vuông MEA có :

Góc A + góc E + góc M = 180o

45o+90o+ góc M = 180o

Góc M = 180o-45o-90o

Góc M = 45o

Hay góc AME = 45o

Mà góc CMN = AME (cmt) 

=> Góc CMN = 45o

k cho mk nha 

22 tháng 12 2018

a,theo gt ta có  tam giác ABC có AB=BC.=>tam giác abc cân tại b=>góc bac=góc bca(tc tam giác cân)

xét Tam giác ABM và Tam giác CBM. có

AB=BC(gt)

góc bac=góc bca(cmt)

ma =mc(gt)

=> Tam giác ABM=Tam giác CBM.(cgc)

b,xét tam giác aem và tam giác cnm có

em=mn(gt)

am=cm(gt)

góc ema= góc cmn(đối đỉnh)

=>tam giác aem =tam giác cnm (cgc)

=>CN=AE(2 cạnh tương ứng)

8 tháng 4 2018

help me

9 tháng 4 2018

a) Xét tam giác vuông ADB và tam giác vuông ACE có:

Góc A chung

AB = AC (gt)

\(\Rightarrow\Delta ABD=\Delta ACE\)   (Cạnh huyền - góc nhọn)

b) Do \(\Delta ABD=\Delta ACE\Rightarrow AD=AE\)

Xét tam giác vuông AEH và tam giác vuông ADH có:

Cạnh AH chung

AE = AD (cmt)

\(\Rightarrow\Delta AEH=\Delta ADH\)   (Cạnh huyền - cạnh góc vuông)

\(\Rightarrow HE=HD\)

c) Xét tam giác ABC có BD, CE là đường cao nên chúng đồng quy tại trực tâm. Vậy H là trực tâm giác giác.

Lại có AM cũng là đường cao nên AM đi qua H.

d) Xét các tam giác vuông EBC và EAC, áp dụng định lý Pi-ta-go ta có:

\(BC^2=EB^2+EA^2;AC^2=EA^2+EC^2\)   

Tam giác ABC cân tại A nên AB = AC hay \(AB^2=AC^2\)

Vậy nên \(AB^2+AC^2+BC^2=2AC^2+BC^2=2\left(EA^2+EC^2\right)+EB^2+EC^2\)

\(=3EC^2+2EA^2+BC^2\).