K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2023

Xét tam giác ABD và tam giác EBD có

      \(\widehat{ABD}\) = \(\widehat{EBD}\) (gt)

         AB = BE (gt)

           BD chung

\(\Delta\)ABD = \(\Delta\) EBD (c-g-c)

⇒AD = DE

⇒ \(\widehat{BAD}\) = \(\widehat{BED}\) = 900

\(\widehat{DEC}\) = 1800 - 900 = 900

Xét tam giác ADI và tam giác EDC có:

\(\widehat{DAI}\) = \(\widehat{DEC}\)  = 900 (cmt)

AD = DE (cmt)

AI = EC (gt)

⇒ \(\Delta\)ADI = \(\Delta\)EDC (c-g-c)

⇒ D1 = D4

Mà D2 + D3 + D4 = 1800

⇒ D1 + D2 + D3 = 1800

⇒ \(\widehat{IDE}\) = 1800

⇒ I;D;E thẳng hàng (đpcm)

 

 

 

 

 

 

 

 

22 tháng 12 2023

loading... Do BD là tia phân giác của ∠ABC (gt)

⇒ ∠ABD = ∠EBD

Xét ∆ABD và ∆EBD có:

AB = BE (gt)

∠ABD = ∠EBD (cmt)

BD là cạnh chung

⇒ ∆ABD = ∆EBD (c-g-c)

⇒ ∠BAD = ∠BED = 90⁰ (hai góc tương ứng)

⇒ DE ⊥ BC

Do AI = EC (gt)

AB = BE (gt)

⇒ BI = AI + AB = BE + EC = BC

∆BCI có:

BI = BC (cmt)

⇒ ∆BCI cân tại B

Mà BD là tia phân giác của ∠ABC

⇒ BD là tia phân giác của ∠IBC

⇒ BD là đường cao của ∆BCI

Lại có:

CA ⊥ AB (∆ABC vuông tại A)

CA ⊥ BI

⇒ CA là đường cao thứ hai của ∆BCI

⇒ ID là đường cao thứ ba của ∆BCI

⇒ ID ⊥ BC

Mà DE ⊥ BC (cmt)

⇒ I, D, E thẳng hàng

17 tháng 12 2020

a) Xét ΔABD và ΔEBD có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

b) Ta có: ΔABD=ΔEBD(cmt)

nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

29 tháng 12 2021

A B C D E F

a/ Xét \(\Delta ABD\)và \(\Delta EBD\)

BA=BE (gt); BD chung

\(\widehat{ABD}=\widehat{EBD}\)(gt)

\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)

b/

\(\Delta ABD=\Delta EBD\left(cmt\right)\Rightarrow\widehat{BAD}=\widehat{BED}=90^o\Rightarrow DE\perp BC\)

c/

Ta có

BE=BA (gt); AF=CE (gt)

=> BE+CE=BA+AF => BC=BF => tg BCF cân tại B

Mà BD là phân giác \(\widehat{ABC}\)

\(\Rightarrow BD\perp CF\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)

Mà \(CA\perp BF\)

=> D là trực tâm của \(\Delta BCF\Rightarrow FD\perp BC\) mà \(DE\perp BC\) => FD trùng DE (từ  1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 đường thẳng vuông góc với đường thẳng đã cho) => E, D, F thẳng hàng

29 tháng 12 2021

hình vào tcn cho mình thay G là điểm D vì mình nhầm trọng tâm của tam giác

a) Xét tam giác ABD và tam giác EBD có:

AB=BE (gt)

^ABD=^EBD (^ABD là tia phân giác)

BD chung 

=> tam giác ABD = tam giác EBD ( c.g.c ) 

b) Vì ABC là tam giác vuông tại A

=> tam giác ABD là tam giác vuông tại A

Mà: tam giác ABD = tam giác EBD ( c.g.c )  

=> ^BED=^BAD= 90o

=> DE_|_BC (đpcm)

c) Nối F và C lại với nhau

Vì: FA=FB ( gt)

Mà CA_|_FB ( tam giác ABC _|_ tại A)

=> CA là đg trung trực của tam giác ABC

=> CA là đg trung tuyến của tam giác ABC

Mà tia phân giác ABC cắt AC tại D

=> D là trọng tâm của tam giác ABC

=> D,E,F thằng hàng (đpcm)

a: Xét ΔBAD và ΔBKD có 

BA=BK

\(\widehat{ABD}=\widehat{KBD}\)

BD chung

Do đó: ΔBAD=ΔBKD

Suy ra: \(\widehat{BAD}=\widehat{BKD}=90^0\)

hay DK\(\perp\)BC

b: Xét ΔBEC có BE=BC

nên ΔBEC cân tại B

mà BI là đường phân giác

nên BI là đường cao