K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2023

a: Xét ΔABC vuông tại A có \(\left\{{}\begin{matrix}sinB=\dfrac{AC}{BC}\\sinC=\dfrac{AB}{BC}\end{matrix}\right.\)

=>\(\dfrac{sinC}{sinB}=\dfrac{AB}{BC}:\dfrac{AC}{BC}=\dfrac{AB}{AC}\)

b: Xét ΔAHB vuông tại H và ΔADE vuông tại D có

AH=AD

\(\widehat{HAB}=\widehat{DAE}\)

Do đó: ΔAHB=ΔADE

c: Ta có: ΔAHB=ΔADE

=>AB=AE

=>A là trung điểm của BE

Xét ΔCEB có

CA là đường trung tuyến

CA là đường cao

Do đó: ΔCEB cân tại C

d: Ta có: ΔCEB cân tại C

mà CA là đường cao

nên CA là phân giác của góc BCE

Xét ΔCIA vuông tại I và ΔCHA vuông tại H có

CA chung

\(\widehat{ICA}=\widehat{HCA}\)

Do đó: ΔCIA=ΔCHA

=>AI=AH

Xét (A;AH) có

AI là bán kính

CE\(\perp\)AI tại I

Do đó: CE là tiếp tuyến của (A;AH)

8 tháng 12 2017

hình bạn tự kẻ nha

a>   Xét tam giác ADE và tam giác AHB có : góc DAE = HAB(đối đỉnh);  góc ADE = góc AHB = 90 độ; AD = AH = bán kính==> tg ADE = AHB (c.g.v_g.n.k)

b>    vì tg ADE = AHB ==> AE = AB ==> A là trung điểm của BE (1)

        xét tg CBE ta thấy CA vuông góc với AB ==> CA là đường cao (2)

         từ (1) và (2) ==> tg CBE cân tại C

c>    vì tg CBE cân tại C ==> CA vừa là đường cao vừa là tia pg xuất phát từ đỉnh C ==> góc ACH = ACI 

        xét tg ACH và tg ACI có: góc AHC = AIC = 90 độ;  AC là cạnh chung; góc ACH = ACI(cmt) ==> tg ACH = ACI (c.h_g.n)

                                                                                                                                                            => AH=AI=bán kính (3)

         mặt khác AI vuông góc với CE (4)

         từ (3) và (4) ==> CE là tiếp tuyến ( khoảng cách từ tâm đến đường thẳng bằng bán kính)

23 tháng 12 2020

a) Ta có: \(\widehat{BAH}+\widehat{CAH}=\widehat{BAC}\)(tia AH nằm giữa hai tia AB,AC)

nên \(\widehat{BAH}+\widehat{CAH}=90^0\)

Xét (A) có 

CE là tiếp tuyến có E là tiếp điểm(gt)

CH là tiếp tuyến có H là tiếp điểm(AH⊥CH tại H)

Do đó: AC là tia phân giác của \(\widehat{EAH}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\widehat{EAH}=2\cdot\widehat{HAC}\)

Xét (A) có 

BH là tiếp tuyến có H là tiếp điểm(BH⊥AH tại H)

BD là tiếp tuyến có D là tiếp điểm(gt)

Do đó: AB là tia phân giác của \(\widehat{HAD}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\widehat{DAH}=2\cdot\widehat{HAB}\)

Ta có: \(\widehat{EAD}=\widehat{EAH}+\widehat{DAH}\)(tia AH nằm giữa hai tia AE,AD)

mà \(\widehat{EAH}=2\cdot\widehat{HAC}\)(cmt)

và \(\widehat{DAH}=2\cdot\widehat{HAB}\)(cmt)

nên \(\widehat{EAD}=2\cdot\widehat{HAC}+2\cdot\widehat{HAB}\)

\(\Leftrightarrow\widehat{EAD}=2\cdot\left(\widehat{HAC}+\widehat{HAB}\right)\)

\(\Leftrightarrow\widehat{EAD}=2\cdot90^0=180^0\)

hay A,D,E thẳng hàng(đpcm)

b) Xét (A) có 

CE là tiếp tuyến có E là tiếp điểm(gt)

CH là tiếp tuyến có H là tiếp điểm(AH⊥CH tại H)

Do đó: CE=CH(Tính chất hai tiếp tuyến cắt nhau)

Xét (A) có 

BH là tiếp tuyến có H là tiếp điểm(BH⊥AH tại H)

BD là tiếp tuyến có D là tiếp điểm(gt)

Do đó: BH=BD(Tính chất hai tiếp tuyến cắt nhau)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HC\cdot HB\)

hay \(AH^2=BD\cdot CE\)(1)

Ta có: AH=AE(=R)

mà AH=AD(=R)

nên AE=AD

mà E,A,D thẳng hàng(cmt)

nên A là trung điểm của ED

\(\Leftrightarrow EA=\dfrac{ED}{2}\)

\(\Leftrightarrow AH=\dfrac{ED}{2}\)

hay \(AH^2=\dfrac{DE^2}{4}\)(2)

Từ (1) và (2) suy ra \(BD\cdot CE=\dfrac{DE^2}{4}\)(đpcm)

c) Xét (M) có 

ΔCNH nội tiếp đường tròn(C,N,H∈(M))

CH là đường kính

Do đó: ΔCNH vuông tại N(Định lí)

⇒CN⊥NH(3)

Vì (M) cắt (A) tại N và H

nên MA là đường trung trực của NH(Vị trí tương đối của hai đường tròn)

hay MA⊥NH(4)

Từ (3) và (4) suy ra CN//AM(Định lí 1 từ vuông góc tới song song)

30 tháng 12 2018

A H B C M I D K F P Q G Note:Hình hơi lệch xíu ^^

a, Vì CM là tiếp tuyến của (A)

=> \(CM\perp AM\)

=> ^CMA = 90o

=> M thuộc đường tròn đường kính AC

Vì ^CHA = 90o

=> H  thuộc đường tròn đường kính AC

Do đó : M và H cùng  thuộc đường tròn đường kính AC

hay 4 điểm A,C,M,H cùng thuộc đường tròn đường kính AC

b, Vì AM = AH ( Bán kính)

       CM = CH (tiếp tuyến)

=> AC là trung trực MH

=> \(AC\perp MH\)tại I

Xét \(\Delta\)AMC vuông tại M có MI là đường cao 

\(\Rightarrow MA^2=AI.AC\)(Hệ thức lượng)

c, Vì CM , CH là tiếp tuyến của (A)

=> AC là phân giác ^HAM

=> ^HAC = ^MAC 

Mà ^HAC + ^HAB  = 90o

=> ^MAC + ^HAB = 90o

Ta có: ^BAD + ^BAC + ^CAM = 180o (Kề bù)

=> ^BAD  + 90o + ^CAM = 180o

=> ^BAD + ^CAM = 90o

Do đó ^BAD = ^BAH (Cùng phụ ^CAM)

Xét \(\Delta\)BAD và \(\Delta\)BAH có:

AB chung

^BAD = ^BAH (cmt)

AD = AH (Bán kính (A) )

=> \(\Delta BAD=\Delta BAH\left(c.g.c\right)\)

=> ^ADB = ^AHB = 90o

\(\Rightarrow BD\perp AD\)

=> BD là tiếp tuyến của (A)

Làm đc đến đây thôi :(