K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

tự kẻ hình

xét tam giác ABD và tam giác  HBE có

góc BHA=góc A 

góc abd=ebh

suy ra đpcm

xét tam giác ahb và tam giác cab có

góc bha bằng góc a

có góc b chung

suy ra tam giác ahb đồng dạng với tam giác cab

suy raab/cb=hb/ab suy ra đpcm

còn phần c mình chưa nghĩ ra

21 tháng 4 2018

  A B C H D E

a) Xét tam giác HBA và tam giác ABC có:

Góc B chung

\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)

\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)

\(\Rightarrow\frac{HB}{AB}=\frac{AB}{CB}\Rightarrow AB^2=BH.BC\)

b) Áp dụng định lý Pi-ta-go cho tam giác vuông, ta có: 

\(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)

Áp dụng tính chất tia phân giác trong tam giác ta có:

\(\frac{AD}{DC}=\frac{AB}{BC}=\frac{12}{20}=\frac{3}{5}\)

mà AD + DC = AC = 16 cm nên \(AD=6cm.\)

c) Xét tam giác BEA và tam giác BDC có:

\(\widehat{ABE}=\widehat{CBD}\)  (BD là tia phân giác)

\(\widehat{BAE}=\widehat{BCD}\)  (Cùng phụ với góc \(\widehat{ABC}\)  )

\(\Rightarrow\Delta BEA\sim\Delta BDC\left(g-g\right)\)

\(\Rightarrow\frac{BE}{BD}=\frac{AB}{CB}\)

Lại có \(\frac{AB}{CB}=\frac{AD}{DC}\Rightarrow\frac{BE}{BD}=\frac{AD}{DC}\Rightarrow\frac{DB}{EB}=\frac{DC}{DA}\)  

17 tháng 8 2018

Bài giải : 

a) Xét tam giác HBA và tam giác ABC có:

Góc B chung

^BHA=^BAC(=90o)

⇒ΔHBA∼ΔABC(g−g)

⇒HBAB =ABCB ⇒AB2=BH.BC

b) Áp dụng định lý Pi-ta-go cho tam giác vuông, ta có: 

BC=√AB2+AC2=20(cm)

Áp dụng tính chất tia phân giác trong tam giác ta có:

ADDC =ABBC =1220 =35 

mà AD + DC = AC = 16 cm nên AD=6cm.

c) Xét tam giác BEA và tam giác BDC có:

^ABE=^CBD  (BD là tia phân giác)

^BAE=^BCD  (Cùng phụ với góc ^ABC  )

⇒ΔBEA∼ΔBDC(g−g)

⇒BEBD =ABCB 

Lại có ABCB =ADDC ⇒BEBD =ADDC ⇒DBEB =DCDA   

Hỏi đáp VietJack

Hỏi đáp VietJack

Hỏi đáp VietJack

Mik copy trên mạng nên cs chút sai sót thì mog bn bỏ qua =)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABH}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

b: Ta có: ΔABC\(\sim\)ΔHBA

nên \(\dfrac{AB}{HB}=\dfrac{CB}{AB}\)

hay \(AB^2=BH\cdot BC\)