Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C 8 6 cm cm
Xét ΔABC có AD là phân giác của góc A
=>\(\dfrac{DC}{AC}=\dfrac{BD}{BA}\Rightarrow\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{8}{6}=\dfrac{4}{3}\)
b) Xét ΔABC có góc A=90o theo đl py-ta-go ta đc
BC=10cm
a) Trong ΔABC có AD là phân giác ∠A
Áp dụng tính chất đường phân giác vào ΔABC, ta có:
\(\frac{AB}{AC}=\frac{DB}{DC}\)
hay \(\frac{8}{6}=\frac{4}{3}=\frac{DB}{DC}\)
b) Áp dụng định lí Py-ta-go vào ΔvuôngABC, ta có:
BD2 = AB2 + AC2
hay BD2 = 82 + 62 = 64 + 36 = 100
=> BD = 10(cm)
Áp dụng tính chất đường phân giác vào ΔABC, ta có:
\(\frac{AC}{AB}=\frac{DC}{DB}\)
=> \(\frac{AC}{AB+AC}=\frac{DC}{DC+DB}\)
hay \(\frac{6}{14}=\frac{DC}{10}\)
=> DC = \(\frac{10.6}{14}=4,28\)(cm)
DB = BC - DC = 10 - 4,28 = 5,72(cm)
Bài 1:
C A B E H D
Ta có: \(\widehat{ACB}+\widehat{ABC}=90^o\)
Xét: \(\Delta ABC\text{ và }\widehat{NBA}\)
\(\widehat{CAB}=\widehat{ANB}=90^o\)
\(\Rightarrow\Delta ABC~\Delta AHB\)
b) \(\frac{AB}{NB}=\frac{AC}{NA}\)
\(\Leftrightarrow\frac{AB}{AC}=\frac{NB}{NA}\left(1\right)\)
Chứng minh tương tự:
\(\Delta ABC~\Delta AHB\)
\(\frac{AN}{AB}-\frac{HC}{AC}\Rightarrow\frac{AB}{AC}=\frac{AN}{NC}\left(2\right)\)
\(\text{Từ (1) và (2) }\Rightarrow\frac{NB}{NA}=\frac{NA}{NC}\Rightarrow AB^2=BH.BC\left(đ\text{pcm}\right)\)
Xét tam giác vuông.
Áp dụng định lý Pi-ta-go, ta có:
\(DB^2=AB^2+AD^2=6^2+8^2=100\)
\(\Rightarrow DB=\sqrt{100}=10\left(cm\right)\)
Bài 2:
1 1 2 2 A B C D
a) Xét \(\Delta OAV\text{ và }\Delta OCD\)
Có: \(\widehat{AOB}=\widehat{COD}\left(đ^2\right)\)
\(\widehat{A_1}=\widehat{C_1}\left(\text{so le}\right)\)
\(\Rightarrow\Delta OAB~\Delta OCD\)
\(\Rightarrow\frac{OB}{OD}=\frac{OA}{OC}\Rightarrow\frac{DO}{DB}=\frac{CO}{CA}\)
b) Ta có: \(AC^2-BD^2=DC^2-AB^2\)
\(\Leftrightarrow AC^2-DC^2=BD^2-AB^2\)
\(\Delta\text{ vuông }ABC\left(\text{theo định lý Pi-ta-go}\right)\)
\(AC^2-DC^2=AD^2\left(1\right)\)
\(\Delta\text{ vuông }BDA\text{ có }\left(\text{theo định lý Pi-ta-go}\right)\)
\(BD^2-AB^2=AD^2\)
\(\text{Từ (1) và (2) }\Rightarrowđ\text{pcm}\)