Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bài này đơn giản, bạn tự vẽ.
Kẻ đường cao AH. Theo đề bài ta có:
\(\left\{{}\begin{matrix}\dfrac{BH}{CH}=\dfrac{9}{16}\\BH+CH=BC=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{9}{5}\\CH=\dfrac{16}{5}\end{matrix}\right.\)
Do đó:
\(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot\sqrt{BH\cdot CH}\cdot5=...\)
Kẻ đường cao AH (H thuộc BC) => BH/CH=9/16
=> BH=[5:(9+16)]x9=1,8 cm => CH=5-1,8=3,2 cm
\(AH^2=BH.CH=1,8.3,2=5,76\Rightarrow AH=2,4cm\)
\(S_{ABC}=\frac{BC.AH}{2}=\frac{5.2,4}{2}=6cm^2\)
Vì tỉ số hai hình chiếu của AB và AC trên cạnh huyền bằng 9/16 nên \(\dfrac{AB}{AC}=\dfrac{3}{4}\)
\(\Leftrightarrow AB=\dfrac{3}{4}\cdot AC\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2\cdot\dfrac{25}{16}=25\)
\(\Leftrightarrow AC^2=16\)
\(\Leftrightarrow AC=4\left(cm\right)\)
\(\Leftrightarrow AB=3\left(cm\right)\)
Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{4\cdot3}{2}=6\left(cm^2\right)\)
a/ Kẻ đường cao AH => BH là hình chiếu của AB trên BC và CH là hình chiếu của AC trên BC
Giả sử \(\frac{AB}{AC}=k\Rightarrow\frac{AB^2}{AC^2}=k^2\)
Ta có \(AB^2=BH.BC;AC^2=CH.BC\Rightarrow\frac{AB^2}{AC^2}=\frac{BH}{CH}=k^2\)
b/ Áp dụng câu A sẽ tính được tỷ số hình chiếu 2 cạnh góc vuông trên BC là mà biết chiều dài BC=82 bài toán là dạng tìm 2 số khi biết tổng và tỷ ở lớp 5 rồi bạn tự giải nốt nhé
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=15^2-9^2=144\)
hay AC=12(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\\CH=\dfrac{12^2}{15}=\dfrac{144}{15}=9,6\left(cm\right)\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AH^2+HB^2=AB^2\)
\(\Leftrightarrow AH^2=9^2-5.4^2=51,84\)
hay AH=7,2(cm)
A B C H
ta có \(\frac{9}{16}=\frac{HB}{HC}=\frac{HB.BC}{HC.BC}=\frac{AB^2}{AC^2}\)
mà \(AB^2+AC^2=BC^2=25\Rightarrow\hept{\begin{cases}AB^2=9\\AC^2=16\end{cases}\Leftrightarrow\hept{\begin{cases}AB=3\\AC=4\end{cases}}}\)
vậy diện tích ABC là \(\frac{1}{2}AB.AC=6\)