Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM vuông tại A và ΔHBM vuông tại H có
BM chung
\(\widehat{ABM}=\widehat{HBM}\)
Do đó: ΔABM=ΔHBM
b: Ta có: ΔABM=ΔHBM
nên AM=HM
mà HM<CM
nên AM<CM
c:
Ta có: ΔBAM=ΔBHM
nên BA=BH
Xét ΔAME vuông tại A và ΔHMC vuông tại H có
MA=MH
\(\widehat{AME}=\widehat{HMC}\)
Do đó: ΔAME=ΔHMC
Suy ra: ME=MC và AE=HC
Ta có: BA+AE=BE
BH+HC=BC
mà BA=BH
và AE=HC
nên BE=BC
Ta có: BE=BC
nên B nằm trên đường trung trực của EC\(\left(1\right)\)
Ta có: ME=MC
nên M nằm trên đường trung trực của EC\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra BM là đường trung trực của EC
hay BM\(\perp\)EC
a) Xét △ ABM và △ HBM có:
\(\widehat{BAM}=\widehat{BHM}=90^0\)
BM chung
\(\widehat{ABM}=\widehat{HBM}\) ( BM phân giác của \(\widehat{B}\) )
⇒ △ ABM = △ HBM ( ch - gn )
b) Vì △ ABM = △ HBM ( cmt )
⇒ AM = HM ( 2 cạnh tương ứng )
△ AME = ▲ CMH ( g - c - g )
⇒ AM = CM ( 2 cạnh tương ứng )
c) Gọi N là giao điểm của BM và CE
Cm △ EBN = △ CBN ( c - g - c ) ( tự chứng minh nha, mik mệt quá )
⇒ \(\widehat{ENB}=\widehat{CNB}\) ( 2 góc tương ứng )
mà \(\widehat{ENB}=\widehat{CNB}=180^0\) ( kề bù )
⇒ BN ⊥ CE
⇒ BM ⊥ CE ( M ∈ BN )
) Ta có:
- AM là đường phân giác góc ABC nên ∠MAB = ∠MAC.
- MH vuông góc với BC nên ∠HMB = 90°.
- ∠BMA = ∠B + ∠MAB = ∠B + ∠MAC.
Vì ∠BMA = ∠HMB và ∠HBM = ∠BMA, nên tam giác ABM = tam giác HBM theo gốc.
b) Ta có:
- AM là đường phân giác của góc ABC nên ∠BAM = ∠MAC.
- MH vuông góc với BC nên ∠HMB = 90°.
- Ta có ∠HMA = ∠HMB + ∠BAM = 90° + ∠MAC.
Vì ∠HMA = 90° + ∠MAC và ∠AHM = 180° - ∠HMA, nên 180° - ∠AHM = 90° + ∠MAC. Do đó, ∠AHM = ∠MAC.
Vậy AK // HM.
c) Ta có:
- AK // HM (theo b).
- AM là đường phân giác của góc ABC nên ∠BAM = ∠MAC.
- HN là đường cao của tam giác ABM, nên ∠BNH = 90°.
- Ta có ∠ANH = ∠ANM + ∠MNH = ∠BAM + ∠BNH = ∠BAM + 90°.
Vì ∠ANH = ∠BAM + 90° và ∠HAN = 180° - ∠ANH, nên 180° - ∠HAN = ∠BAM + 90°. Do đó, ∠HAN = ∠BAM.
Vậy HN // AM.
a) Xét hai tam giác vuông: \(\Delta AMB\) và \(\Delta HMB\) có:
BM là cạnh chung
\(\widehat{ABM}=\widehat{HBM}\) (do BM là phân giác của \(\widehat{ABC}\))
\(\Rightarrow\Delta AMB=\Delta HMB\) (cạnh huyền-góc nhọn)
b) Do \(\Delta AMB=\Delta HMB\) (cmt)
\(\Rightarrow AM=HM\) (hai cạnh tương ứng)
c) \(\Delta MHC\) vuông tại H
\(\Rightarrow MC\) là cạnh huyền nên là cạnh lớn nhất
\(\Rightarrow HM< MC\)
Lại có HM = AM (cmt)
\(\Rightarrow AM< MC\)