Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\Rightarrow\dfrac{AB^2}{AC^2}=\dfrac{25}{36}\)
\(\Rightarrow\dfrac{BH.BC}{HC.BC}=\dfrac{25}{36}\Rightarrow BH=\dfrac{25}{36}HC\)
Áp dụng HTL trong tam giác ABC vg tại A có đg cao AH:
\(AH^2=BH.HC\)
\(\Rightarrow30^2=\dfrac{25}{36}HC.HC\Rightarrow HC^2=1296\Rightarrow HC=36\left(cm\right)\)
\(\Rightarrow BH=\dfrac{25}{36}HC=25\left(cm\right)\)
A B C H
Đặt \(AB=x\left(cm\right)\left(x>0\right)\)
\(AC=1,4x\left(cm\right)\)
Trong \(\Delta ABC\) có: \(\widehat{A}=90^0\left(gt\right)\)
AH là đường cao ứng với BC (gt)
\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\\ \Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{x^2}+\dfrac{1}{1,96x^2}\\ \Rightarrow\dfrac{74}{49x^2}=\dfrac{1}{225}\\ \Rightarrow\dfrac{74}{49x^2}=\dfrac{1}{225}\\ \Rightarrow49x^2=16650\\ \Rightarrow x^2=\dfrac{16650}{49}\\ \Rightarrow x=18,43\)
Áp dụng định lý \(Py-ta-go\) vào \(\Delta AHB\)
\(\Rightarrow HB^2=\sqrt{AB^2-AH^2}=\sqrt{18,33^2-15^2}=10,54\left(cm\right)\)
Áp dụng định lý \(Py-ta-go\) vào \(\Delta AHC\)
\(\Rightarrow HC^2=\sqrt{AC^2-AH^2}=\sqrt{\left(1,4\cdot18,33\right)^2-15^2}=20,82\left(cm\right)\)
Cho tam giác ABC vuông tại A. Biết \(\dfrac{AB}{AC}=\dfrac{5}{6}\), đường cao AH = 30cm. Tính HB, HC
Hệ thức lượng trong tam giác vuông :
\(AB^2=BC.BH\left(1\right)\)
\(AC^2=BC.CH\left(2\right)\)
\(\left(1\right):\left(2\right)\Rightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}=\dfrac{25}{36}\left(\dfrac{AB}{AC}=\dfrac{5}{6}\right)\)
\(\Rightarrow BH=\dfrac{25}{36}CH\)
mà \(AH^2=BH.CH\)
\(\Rightarrow\dfrac{25}{36}CH^2=AH^2=30^2\)
\(\Rightarrow\dfrac{5}{6}CH=30\Rightarrow CH=\dfrac{30.6}{5}=36\) (\(\left(cm\right)\)
\(\Rightarrow BH=\dfrac{25}{36}.36=25\) \(\left(cm\right)\)
A B C H
Xét tg vuông ABH và tg vuông ACH có
\(\widehat{BAH}=\widehat{ACH}\) (cùng phụ với \(\widehat{ABC}\) )
=> tg ABH đồng dạng với tg ACH
\(\Rightarrow\dfrac{AH}{HC}=\dfrac{HB}{AH}=\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Rightarrow\dfrac{30}{HC}=\dfrac{5}{6}\Rightarrow HC=\dfrac{6.30}{5}=36cm\)
\(\Rightarrow\dfrac{HB}{30}=\dfrac{5}{6}\Rightarrow HB=\dfrac{5.30}{6}=25cm\)
Bài 2:
Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)
Bài 1:
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)
\(\Leftrightarrow HC=36\left(cm\right)\)
hay HB=25(cm)
\(1,\dfrac{AB}{AC}=\dfrac{5}{6}\Leftrightarrow AB=\dfrac{5}{6}AC\)
Áp dụng HTL tam giác
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{1}{\dfrac{25}{36}AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36}{25AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36+25}{25AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{61}{25AC^2}\\ \Leftrightarrow25AC^2=54900\Leftrightarrow AC^2=2196\Leftrightarrow AC=6\sqrt{61}\left(cm\right)\\ \Leftrightarrow AB=\dfrac{5}{6}\cdot6\sqrt{61}=5\sqrt{61}\\ \Leftrightarrow BC=\sqrt{AB^2+AC^2}=61\left(cm\right)\)
Áp dụng HTL tam giác:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=...\\CH=\dfrac{AC^2}{BC}=...\end{matrix}\right.\)
Bài 1:
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)
\(\Leftrightarrow HC=36\left(cm\right)\)
hay HB=25(cm)
Ta có: góc BAH + HAC = 900
góc ACH + HAC = 900
=> góc BAH = góc ACH
Xét tam giác AHB và tam giác CAB ta có:
góc AHB = góc CAB (=900)
góc BAH = góc BCA (chứng minh trên)
=> tam giác AHB đồng dạng với tam giác CAB (gg) (1)
\(\Rightarrow\frac{AH}{AC}=\frac{HB}{AB}\Rightarrow HB=\frac{AH.AB}{AC}=AH.\frac{AB}{AC}=30.\frac{5}{6}=25cm\)
\(AH^2=BH.CH\Rightarrow CH=\frac{AH^2}{BH}=\frac{30^2}{25}=36cm\)
Vậy BH = 25cm. CH = 36cm
ta có thể đơn giản xét tam giác BAH ~ tam giác ACH
=>AH/CH= BH/AH= AB/AC
=> 30/CH= BH/30= 5/6
=> CH= 30.6:5= 36
=> BH= 5.30:6= 25
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{DB}{DC}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{25}{36}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=30^2=900\)
\(\Leftrightarrow HC^2=1296\)
\(\Leftrightarrow HC=36\left(cm\right)\)
\(\Leftrightarrow HB=25\left(cm\right)\)
\(\Leftrightarrow BC=36+25=61\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=5\sqrt{61}\left(cm\right)\\AC=6\sqrt{61}\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC vuông ở A. Biết \(\frac{AB}{AC}\)=\(\frac{5}{7}\), đường cao AH=15 cm. Tính HB, HC.
A B C H
Có: góc ABC + góc BAH = 900
góc HAC + góc BAH = 900
=> góc ABC = góc HAC
Xét tam giác AHC và tam giác BAC có:
góc ABC = góc HAC (chứng minh trên)
góc AHC = góc BAC (=900)
=> tam giác AHC đồng dạng với tam giác BAC
\(\Rightarrow\frac{AH}{AB}=\frac{HC}{AC}\Rightarrow\frac{AH}{HC}=\frac{AB}{AC}=\frac{5}{7}\Rightarrow HC=\frac{7}{5}.AH=\frac{7}{5}.15=21cm\)
Ta có: \(AH^2=HB.HC\Rightarrow HB=\frac{AH^2}{HC}=\frac{15^2}{21}=\frac{75}{7}cm\)
Vậy HB = 75/7 cm , HC = 21cm