K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2021

Giải giúp mình với ạ

b: AH=14,4cm

BH=19,2cm

CH=10,8cm

5 tháng 11 2021

Giúp đi mà mấy bro ơi

b: AB=24cm

AH=14,4(cm)

BH=19,2(cm)

CH=10,8(cm)

5 tháng 11 2021

a, \(AB=\sqrt{BC^2-AC^2}=24\left(cm\right)\left(pytago\right)\)

\(\sin B=\dfrac{AC}{BC}=\dfrac{3}{5}\approx\sin37^0\\ \Rightarrow\widehat{B}\approx37^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx53^0\)

b, Áp dụng HTL: \(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=19,2\left(cm\right)\\CH=\dfrac{AC^2}{BC}=10,8\left(cm\right)\\AH=\sqrt{BH\cdot CH}=14,4\left(cm\right)\end{matrix}\right.\)

5 tháng 11 2021

Cảm ơn bn nhiều nhá

31 tháng 7 2023

\(AH^2=BH.CH=18.32=576\Rightarrow AH=24\left(cm\right)\)

\(AB^2=AH^2+BH^2=576+324=900\) (Δ ABH vuông tại H)

\(\Rightarrow AB=30\left(cm\right)\)

\(AC^2=AH^2+CH^2=576+1024=1600\) (Δ ACH vuông tại H)

\(\Rightarrow AC=40\left(cm\right)\)

Xét tam giác AHB vuông tại H có:

AH2+HB2=AB2(định lý pythagore) (1)

Xét tam giác AHC vuông tại H có:

HA2+HC2=AC2 (định lý pythagore) (2) 

Từ (1) và (2) ta cộng lại vế theo vế, có:

2AH2+BH2+CH2=AB2+AC2

<=>2AH2+BH2+CH2=BC2

<=> 2AH2+182+322=(18+32)2

<=>2AH2+1348=2500

<=>2AH2=2500-1348

<=>2AH2=1152

<=>AH2=1152:2

<=>AH2=576

<=>AH=\(\sqrt{576}\)

<=>AH=24(cm)

-Ta thay AH=24cm vào (1) ta có:

HB2+AH2=AB2

<=>182+242=AB2

<=>900=AB2

<=>\(AB=\sqrt{900}=30\)(cm)

-Ta thay AH=24cm vào (2) ta có:

HC2+HA2=AC2

<=>322+242=AC2

<=>1600=AC2

\(\Leftrightarrow AC=\sqrt{1600}=40\left(cm\right)\)

Vậy AB=30cm; AC=40cm

24 tháng 5 2020

Trả lời : 

a, Xét \(\Delta ABC\)có :

AB2 + AC2 = 62 + 82 = 36 + 64 = 100

BC2 = 102 = 100

=> AB2 + AC= BC2

=> \(\Delta ABC\)vuông tại A.

Iem học ngu hình nên chỉ làm được câu a, có gì thứ lỗi -_-

24 tháng 5 2020

a, bn dựa vào định lý Ta- lét đảo để cm nha

b, Xét \(\Delta DEC\) và \(\Delta ABC\) có

\(\widehat{EDC}=\widehat{BAC}=90^o\)

\(\widehat{BCA}\): chung

=> \(\Delta EDC\) đồng dạng vs \(\Delta ABC\left(g.g\right)\)

c, Xét tam giác ABC có AD là tia tia giác góc BAC ta đc:

\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}\)

Mà BC + CD = BC

=> BC + CD = 10

=> BD  = 10 : (3+4) x 3 = 30/7 (cm)

\(S_{ABC}=\frac{6\cdot8}{2}=24\left(cm^2\right)\)

a: Đề sai rồi bạn

b: BC=căn 8^2+6^2=10cm

S ABC=1/2*AB*AC=24cm2
Xét ΔBAH vuông tại H và ΔBCA vuông tại A có

góc B chung

=>ΔBAH đồng dạng với ΔBCA

=>BA/BC=BH/BA=6/10=3/5 và S BAH/S BCA=(3/5)^2=9/25

=>DH/DA=3/5

=>HD/HA=3/8

=>S BHD=3/8*S HBA=3/8*9/25*S BCA=27/200*S BCA

NV
10 tháng 4 2022

a.

Xét hai tam giác vuông HBA và ABC có:

\(\left\{{}\begin{matrix}\widehat{ABH}\text{ chung}\\\widehat{AHB}=\widehat{BAC}=90^0\end{matrix}\right.\)

\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g.g\right)\)

\(\Rightarrow\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow AB^2=BH.BC\)

b.

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2+AC^2}=30\left(cm\right)\)

Áp dụng định lý phân giác:

\(\dfrac{AD}{AC}=\dfrac{BD}{BC}\Rightarrow\dfrac{AD}{24}=\dfrac{18-AD}{30}\)

\(\Rightarrow AD=8\left(cm\right)\)

NV
10 tháng 4 2022

undefined

a: XétΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: \(AH=\sqrt{15^2-9^2}=12\left(cm\right)\)

BI là phân giác của góc ABH

=>IA/AB=IH/BH

=>IA/5=IH/3=(IA+IH)/(5+3)=12/8=1,5

=>IA=7,5cm; IH=4,5cm

c: góc BAK+góc CAK=90 độ

góc BKA+góc HAK=90 độ

mà góc CAK=góc HAK

nên góc BAK=góc BKA

=>BI vuông góc AK

Xet ΔBAK có

BI,AI là đường cao

=>I là trực tâm

=>IK vuông góc AB

=>IK//AC