Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(a+b-2\sqrt{ab}\ge0\)
\(a+b\ge2\sqrt{ab}\)
\(\frac{a+b}{2}\ge\sqrt{ab}\)
Ta có AH2=CH.BH=ab (1)
Gọi M là trung điểm của BC.
Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)
Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)
Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)
hình tự vẽ nhé
a) \(AB< AC\) => \(BH< CH\)
Áp dụng hệ thức lượng vào tam giác vuông ABC ta được:
\(AH^2=BH.CH\)
=> \(BH.CH=4\)
mà \(BH+CH=5\),
giải ra ta được: \(BH=1cm;\)\(CH=4cm\)
Áp dụng hệ thức lượng vào tam giác vuông ABC đc:
AB2 = BH . BC
=> AB2 = 1 . 5 = 5
=> \(AB=\sqrt{5}cm\)
Tương tự đc: \(AC=2\sqrt{5}cm\)
a) Theo hệ thức lượng trong tam giác vuông ta có:
AB.AC=AH.BC
AH^2=AM.AB
AH^2=AN.AC
=> AH^4=AM.AB.AN.AC=AM.AN.BC.AH
<=>AH^3=AM.AN.BC (đpcm)
b) Theo hệ thức lượng trong tam giác vuông ta có:
AH.HB=HM.AB
HN.AC=AH.HC
Tứ giác ANHM vcó 3 góc vuông nên là hình chữ nhật
=> AH=MN; AN=MH;AM=HN
Ta có:
AN.AB + AM.AC
=MH.AB+HN.AC
=AH.BH+AH.HC
=AH(BH+HC)
=AH.BC
=MN.BC
Vậy MN. BC = AN.AB + AM.AC