Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B C A M H K N D O I
a) Xét tứ giác BHMK có 3 góc vuông nên nó là hình chữ nhật.
Khi đó hai đường chéo bằng nhau nên BM = HK.
b) Xét tam giác ABC có M là trung điểm AC, MK // AB nên MK là đường trung bình.
Vậy thì K là trung điểm BC.
Xét tứ giác BMCN có K là trung điểm hai đường chéo nên nó là hình bình hành.
Lại có MN vuông góc BC nên BMCN là hình thoi.
Dễ thấy rằng MK = AB/2 hay MN = AB.
Để hình thoi BMCN là hình vuông thì MN = BC hau AB = BC.
Vậy tam giác ABC là tam giác vuông cân tại B thì BMCN là hình vuông.
c) Ta có BHMK là hình chữ nhật nên BM giao HK tại trung điểm mỗi đường.
Dễ thấy tứ giác ABNM có AB song song và bằng NM nên nó là hình bình hành.
Vậy nên BM giao AM tại trung điểm mỗi đoạn.
Từ đó ta có BM, HK, AN đồng quy tại trung điểm mỗi đoạn.
d) Gọi giao điểm của BM, HK và AN làO, giao của BM và AK là I.
Ta có: do KM // AB, áp dụng Talet:
\(\frac{IM}{BI}=\frac{MK}{AB}=\frac{1}{2}\Rightarrow\frac{IM}{BO+OI}=\frac{1}{2}\Rightarrow\frac{IM}{IM+OI+OI}=\frac{1}{2}\)
\(\Rightarrow IM=2OM\)
Áp dụng Talet cho tam giác AND và ADC ta có:
\(\frac{OI}{DN}=\frac{AI}{AD}=\frac{IM}{DC}\Rightarrow\frac{OI}{DN}=\frac{IM}{DC}\Rightarrow DC=2ND\)
(Hình bạn tự vẽ nha)
a ,
Tứ giác AEMF có góc A = góc AME = góc AFM = 90 độ nên là hình chữ nhật .
b ,
Xét tam giác vuông ABC có đường trung tuyến AM ứng với cạnh huyền BC nên AM = MC = MB
Vì N là điểm đối xứng của M qua F nên MN vuông góc với AC và MF=NF .
-> AC là đường trung trực của MN
->MC = NC , AM = AN (áp dụng tính chất của đường trung trực ) mà AM = MC nên MC=NC=AM=AN .
-> Tứ giác MANC là hình thoi.
c ,
Để hình chữ nhật AEMF là hình vuông thì AE = AF (1)
Vì AM=BM và ME vuông góc với AB nên ME là đường trung trực của AB .
-> AE = EB (2)
Vì tứ giác MANC là hình thoi nên AF=FC (3)
Từ (1),(2) và (3) suy ra BE = FC (4)
Từ (1) và (4) suy ra : AE + BE = AF + FC
hay AB = AC
-> Tam giác ABC là tam giác vuông cân .
Vậy để tứ giác AEMF là hình vuông thì tam giác ABC là tam giác vuông cân .
a: Xét tứ giác ANMP có
\(\widehat{ANM}=\widehat{APM}=\widehat{PAN}=90^0\)
Do đó: ANMP là hình chữ nhật
Answer:
Mình chỉ biết làm a, b còn c, d mình không biết. Bạn thông cảm ạ.
a. Có: DM vuông góc với AC; DN vuông góc với BC; AC vuông góc với BC
=> CMDN là hình chữ nhật
b. Xét tam giác abc VUÔNG TẠI a:
D là trung điểm AB
=> CD là đường trung tuyến
=> CD = DB = AD
=> Tam giác CDB cân tại D
Mà DN vuông góc với BC
=> DN là đường cao và cũng là trung tuyến
=> CN = NB
Xét tứ giác DCEB:
CN = NB
DN = NE
Mà DE vuông góc BC
=> Tứ giác DCEB là hình thoi.
c) Xét tam giác \(ABC\)vuông tại \(C\)có:
\(AB^2=AC^2+BC^2\)(định lí Pythagore)
\(\Leftrightarrow AC^2=AB^2-BC^2=10^2-6^2=64=8^2\)
suy ra \(AC=8\left(cm\right)\).
\(DM\)vuông góc với \(AC\)mà \(AB\perp AC\)suy ra \(DM//AB\)
mà ta lại có \(D\)là trung điểm của \(AB\)
nên \(DM\)là đường trung bình của tam giác \(ABC\).
Suy ra \(DM=\frac{1}{2}BC=\frac{1}{2}.6=3\left(cm\right)\)
Tương tự ta cũng suy ra \(DN=\frac{1}{2}AC=4\left(cm\right)\).
\(S_{CMDN}=DM.DN=3.4=12\left(cm^2\right)\).
d)
Có \(CDBE\)là hình thoi nên để \(CDBE\)là hình vuông thì \(CD\perp BE\).
Xét tam giác \(ABC\)có \(D\)là trung điểm \(AB\)mà \(CD\perp BE\)nên tam giác \(ABC\)cân tại \(C\).
Vậy tam giác \(ABC\)vuông cân tại \(C\).
a)
D là trung điểm của BC (gt)
mà DF // AB (AB _I_ AC; DF _I_ AC)
=> F là trung điểm của AC
mà D là trung điểm của BC (gt)
=> DF là đường trung bình của tam giác CAB
=> DF = \(\frac{1}{2}\)AB = 10 : 2 = 5 (cm)
b)
D là trung điểm của BC
mà DE // AC (DE _I_ AB; AC _I_ AB)
=> E là trung điểm của AB
mà E là trung điểm của MD (M đối xứng D qua AB)
=> ADBM là hình bình hành
mà AB _I_ MD (M đối xứng D qua AB)
=> ADBM là hình thoi
c)
DEA = EAF = AFD = 900
=> AEFD là hình chữ nhật
=> AEFD là hình vuông
<=> AD là tia phân giác của BAC
mà AD là đường trung tuyến của tam giác ABC vuông tại A (D là trung điểm của BC)
=> Tam giác ABC vuông cân tại A
Bạn tự vẽ hình nha!!!
Ta có:
\(AC \perp AB\) (\(\Delta ABC\) vuông tại A (gt))
\(AC \perp DF\) (gt)
\(\Rightarrow\) AB // DF (Định lí 1 bài từ vuông góc đến song song)
mà D là trung điểm BC (gt)
\(\Rightarrow\) F là trung điểm của AC (Định lí 1 bài đường trung bình của tam giác)
Xét \(\Delta ABC\) có:
D là trung điểm BC (gt)
F là trung điểm của AC (cmt)
\(\Rightarrow\) DF là đường trung bình của \(\Delta ABC\)
\(\Rightarrow DF=\frac{AB}{2}=\frac{10}{2}=5\left(cm\right)\)
b) Chứng minh tương tự ta có E là trung điểm AB
Xét tứ giác ADBM có:
\(\Rightarrow EM=ED\) (M đối xứng với D qua AB (gt))
\(EA=EB\left(cmt\right)\)
MD giao AB tại E (gt)
\(\Rightarrow\) Tứ giác ADBM là hình bình hành (dhnb)
mà \(AB \perp MD\) (M đối xứng với D qua AB (gt))
\(\Rightarrow\) Tứ giác ADBM là hình thoi (dhnb)
c) Xét tứ giác AEDF có:
\(\widehat{EAF} = 90^0\) (\(\Delta ABC\) vuông tại A (gt))
\(\widehat{AED} = 90^0\) (\(MD \perp AB\))
\(\widehat{AFD} = 90^0\) (\(DF \perp AC\))
\(\Rightarrow\) Tứ giác AEDF là hình chữ nhật (dhnb)
Để hình chứ nhật AEDF
\(\Leftrightarrow\) AEDF là hình thoi
\(\Leftrightarrow\) AD là tia phân giác của \(\Delta ABC\) (vì AD là đường trung tuyến)
\(\Leftrightarrow\) \(\Delta ABC\) cân tại A (vì \(\Delta ABC\) vuông tại A (gt))
\(\Leftrightarrow\)\(\Delta ABC\) vuông cân tại A
a: D đối xứng M qua AB
nên AD=AM; BD=BM và DM vuông góc với AB
Xét tứ giác AIDE có
góc AID=góc AED=góc EAI=90 độ
Do đó: AIDE là hình chữ nhật
b: AD=AM
BD=BM
mà AD=BD
nên AD=AM=BD=BM
=>ADBM là hình thoi
c: AI=AB/2=3cm
AE=AC/2=4,5cm
SAIDE=3*4,5=13,5cm2