Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
***Hình bạn tự vẽ nha***
a, Xét tam giác ABC và tam giác BHA có :
Góc ABC chung
Góc BAC = góc BHA ( =90°)
==> Tam giác ABC đồng dạng tam giác HBA ( g.g )
==> AB/HB = BC/AB ==> AB^2 = HB. BC
1: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc ACB chung
Do đó: ΔABC\(\sim\)ΔHAC
2: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)
Xét ΔABC có AM là phân giác
nên BM/AB=CM/AC
=>BM/3=CM/4
Áp dụng tính chất của dãy tr số bằng nhau, ta được:
\(\dfrac{BM}{3}=\dfrac{CM}{4}=\dfrac{BM+CM}{3+4}=\dfrac{25}{7}\)
Do đó: BM=75/7(cm); CM=100/7(cm)
A B C H M N K
BM // NH. ta có : \(\frac{KB}{KH}=\frac{KM}{KN}\)
MH // NC . ta có : \(\frac{KM}{KN}=\frac{KH}{KC}\)
\(\Rightarrow\frac{KB}{KH}=\frac{KH}{KC}\)
\(\Rightarrow KB.KB=KH^2\)
b: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật
Xét ΔHAB vuông tại H có HM là đường cao
nên BH^2=BM*BA; AH^2=AM*AB
=>BM=BH^2/BA; MA=AH^2/AB
BM/MA=BH^2/BA:AH^2/AB
\(=\dfrac{BH^2}{AH^2}=\dfrac{BH^2}{BH\cdot HC}=\dfrac{BH}{HC}\)
\(=\dfrac{AB^2}{BC}:\dfrac{AC^2}{BC}=\dfrac{AB^2}{AC^2}\)