K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2016

 gfhth

17 tháng 3 2016

Cho tam giác ABC vuông tại A, AB=15cm, AC=20cm. Vẽ đường cao AH.

a) Cm: AB2= BH.BC.

b) Vẽ đường phân giác BD cắt AH tại E. Cm: Tam giác BHE đồng dạng với Tam giác BAD.

c) Cm: Tam giác ADE cân và tính AE.

Các bạn giải giúp mình nha, nhất là câu c ý. Cảm ơn mọi người.

mk có thấy câu d) đâu???????

17 tháng 3 2016

kho the tuong hinh hoc 7 chu ban

27 tháng 1 2016

bạn nhấn vào đúng 0 sẽ ra đáp án

27 tháng 1 2016

du

25 tháng 3 2015

Phần a dựa vào hệ thức lượng trong tam giác vuông

Phần b chứng minh tam giác đồng dạng thì sẽ ra

Phần c, d tớ chưa nghĩ ra

 

21 tháng 4 2018

  A B C H D E

a) Xét tam giác HBA và tam giác ABC có:

Góc B chung

\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)

\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)

\(\Rightarrow\frac{HB}{AB}=\frac{AB}{CB}\Rightarrow AB^2=BH.BC\)

b) Áp dụng định lý Pi-ta-go cho tam giác vuông, ta có: 

\(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)

Áp dụng tính chất tia phân giác trong tam giác ta có:

\(\frac{AD}{DC}=\frac{AB}{BC}=\frac{12}{20}=\frac{3}{5}\)

mà AD + DC = AC = 16 cm nên \(AD=6cm.\)

c) Xét tam giác BEA và tam giác BDC có:

\(\widehat{ABE}=\widehat{CBD}\)  (BD là tia phân giác)

\(\widehat{BAE}=\widehat{BCD}\)  (Cùng phụ với góc \(\widehat{ABC}\)  )

\(\Rightarrow\Delta BEA\sim\Delta BDC\left(g-g\right)\)

\(\Rightarrow\frac{BE}{BD}=\frac{AB}{CB}\)

Lại có \(\frac{AB}{CB}=\frac{AD}{DC}\Rightarrow\frac{BE}{BD}=\frac{AD}{DC}\Rightarrow\frac{DB}{EB}=\frac{DC}{DA}\)  

17 tháng 8 2018

Bài giải : 

a) Xét tam giác HBA và tam giác ABC có:

Góc B chung

^BHA=^BAC(=90o)

⇒ΔHBA∼ΔABC(g−g)

⇒HBAB =ABCB ⇒AB2=BH.BC

b) Áp dụng định lý Pi-ta-go cho tam giác vuông, ta có: 

BC=√AB2+AC2=20(cm)

Áp dụng tính chất tia phân giác trong tam giác ta có:

ADDC =ABBC =1220 =35 

mà AD + DC = AC = 16 cm nên AD=6cm.

c) Xét tam giác BEA và tam giác BDC có:

^ABE=^CBD  (BD là tia phân giác)

^BAE=^BCD  (Cùng phụ với góc ^ABC  )

⇒ΔBEA∼ΔBDC(g−g)

⇒BEBD =ABCB 

Lại có ABCB =ADDC ⇒BEBD =ADDC ⇒DBEB =DCDA   

a: XétΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó:ΔABC\(\sim\)ΔHBA

b: Ta có: ΔABC\(\sim\)ΔHBA

nên BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

\(BH=\dfrac{BA^2}{BC}=\dfrac{3^2}{5}=1.8\left(cm\right)\)

28 tháng 3 2021

e) \(AH\perp BC\)(giả thiết).

\(\Rightarrow\Delta HAB\)vuông tại H.

\(\Rightarrow S_{HAB}=\frac{AH.BH}{2}=4,8.\frac{30}{14}=\frac{144}{14}=\frac{72}{7}\left(cm^2\right)\)

Xét \(\Delta ABC\)có phân giác BD (giả thiết).

\(\Rightarrow\frac{AD}{CD}=\frac{AB}{BC}\)(tính chất).

\(\Rightarrow\frac{AD}{CD+AD}=\frac{AB}{BC+AB}\)(tính chất của tỉ lệ thức).

\(\Rightarrow\frac{AD}{AC}=\frac{AB}{BC+AB}\)

\(\Rightarrow\frac{AD}{8}=\frac{6}{10+6}=\frac{6}{16}=\frac{3}{8}\)(thay số).

\(\Rightarrow AD=\frac{3}{8}.8=3\left(cm\right)\)

Vì \(\Delta ABC\)vuông tại A (giả thiết).

\(\Rightarrow\widehat{CAB}=90^0\Rightarrow\widehat{DAB}=90^0\)

\(\Rightarrow\Delta ADB\)vuông tại A.

\(\Rightarrow S_{ADB}=\frac{AD.AB}{2}=\frac{3.6}{2}=9\left(cm^2\right)\)

Ta có: \(S_{ABC}=\frac{AB.AC}{2}\)(theo câu a))

\(\Rightarrow S_{ABC}=\frac{6.8}{2}=\frac{48}{2}=24\left(cm^2\right)\)

Lại có: \(S_{ABD}+S_{BCD}=S_{ABC}\)

\(\Rightarrow9+S_{BCD}=24\)(thay số).

\(\Rightarrow S_{BCD}=24-9=15\left(cm^2\right)\)

Vậy \(S_{HAB}=\frac{72}{7}cm^2;S_{BCD}=15cm^2\)

28 tháng 3 2021

A B C H E D I