K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2021

\(a,\widehat{AFH}=\widehat{AEH}=\widehat{EAF}=90^0\) nên \(AFHE\) là hcn

\(b,\) Vì \(AFHE\) là hcn nên \(AE=FH=FM\left(t/c.đối.xúng\right);AE//FH\)

\(\left\{{}\begin{matrix}AE=FM\\AE//FM\left(AE//FH\right)\end{matrix}\right.\Rightarrow AEFM\) là hbh

\(c,\) Tam giác AHN có AE vừa là đường cao và trung tuyến nên cân tại A

Do đó AE cũng là p/g \(\widehat{HAN}\)

\(\Rightarrow\widehat{NAE}=\widehat{HAE}\)

Mà \(\widehat{HAE}=\widehat{ACB}\left(cùng.phụ.với.\widehat{ACH}\right)\)

\(\Rightarrow\widehat{NAE}=\widehat{ACB}\left(1\right)\)

Vì AI là trung tuyến ứng với cạnh huyền tam giác ABC vuông tại A nên \(AI=BI=IC=\dfrac{1}{2}BC\Rightarrow\Delta AIB\) cân tại I

\(\Rightarrow\widehat{IAB}=\widehat{ABC}\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow\widehat{NAE}+\widehat{IAB}=\widehat{ACB}+\widehat{ABC}=90^0\left(\Delta ABC.vuông.tại.A\right)\\ \Rightarrow\widehat{IAN}=90^0\\ \Rightarrow AI\perp MN\)

 

 

NM
13 tháng 11 2020

"trên tia đối của tia EH lấy điểm P ..." bài này có sai đề không nhỉ, không thể tồn tại hai điểm P, Q thì làm sao vẽ hình được e

31 tháng 10 2021

sai thế nào đc

17 tháng 8 2017

Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng j: Đoạn thẳng [A, H] Đoạn thẳng k: Đoạn thẳng [H, M] Đoạn thẳng l: Đoạn thẳng [N, H] Đoạn thẳng m: Đoạn thẳng [M, N] Đoạn thẳng n: Đoạn thẳng [A, N] Đoạn thẳng p: Đoạn thẳng [A, M] Đoạn thẳng q: Đoạn thẳng [E, F] Đoạn thẳng r: Đoạn thẳng [A, I] Đoạn thẳng t: Đoạn thẳng [I, D] A = (9.91, 10.29) A = (9.91, 10.29) A = (9.91, 10.29) B = (3.97, -8.27) B = (3.97, -8.27) B = (3.97, -8.27) C = (33.4, -8.47) C = (33.4, -8.47) C = (33.4, -8.47) Điểm H: Giao điểm đường của i, g Điểm H: Giao điểm đường của i, g Điểm H: Giao điểm đường của i, g Điểm M: H đối xứng qua f Điểm M: H đối xứng qua f Điểm M: H đối xứng qua f Điểm N: H đối xứng qua h Điểm N: H đối xứng qua h Điểm N: H đối xứng qua h Điểm E: Giao điểm đường của f, k Điểm E: Giao điểm đường của f, k Điểm E: Giao điểm đường của f, k Điểm F: Giao điểm đường của h, l Điểm F: Giao điểm đường của h, l Điểm F: Giao điểm đường của h, l Điểm I: Trung điểm của m Điểm I: Trung điểm của m Điểm I: Trung điểm của m Điểm D: Giao điểm đường của s, q Điểm D: Giao điểm đường của s, q

a) Do EM = EH và AE vuông góc MH tại E nên AB là đường trung trực của MH. Tương tự AC là trung trực HN.

b) Do  AB là đường trung trực của MH nên AM = AH. Tương tự AH = AN

Vậy AM = AN hay tam giác AMN cân tại A.

c) Xét tam giác HMN có E, F lần lượt là trung điểm HM, HN nên EF là đường trung bình tam giác.

Vậy EF // MN.

d) Tam giác cân AMN có I là trung điểm MN nên \(AI⊥MN\)

Lại có MN //EF nên \(AI⊥EF.\)