K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2021

b: Xét tứ giác ACED có

AD//CE

AD=CE

Do đó: ACED là hình bình hành

Suy ra: AC//ED
hay ED⊥AB

25 tháng 12 2021

Đáp án:

 

Giải thích các bước giải:

 a) tam giác ADC và tam giác ECD

   AD=FC 

   chung cạnh CD

  Góc D=góc C= 90 độ

 suy ra tam giác ADC=tam giác ECD(c.g.c)

b) Ta có AD=CE

             AD // CF ( cùng vuông góc BC)

suy ra ADEC là hình bình hành

suy ra DE // AC

mà AB vuông góc AC => DE vuông góc AB

c) Ta có ADEC là hình bình hành => góc DEC=góc DAC (1)

   Ta có góc DAC+góc BAD= 90 độ 

mà góc ABC+ góc BAD= 90 độ

=> góc DAC=ABC (2)

Từ (1) và (2) suy ra góc CED=góc ABC

cho mifh xin tích Ạ

 

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.5. Cho tam giác ABC, biết...
Đọc tiếp

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .

2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.

3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.

4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.

5. Cho tam giác ABC, biết BC bằng 52cm, AB = 20cm ,AC=48 cm.

a, Chứng minh tam giác ABC vuông ở A;

b, Kẻ AH vuông góc với BC. Tính AH .

6. Cho tam giác vuông cân ABC, A=90.Qua A kẻ đường thẳng d tùy ý. Từ B và C kẻ BH vuông d. Chứng minh rằng tổng BH^2+CK^2 ko phụ thuộc vào vị trí của đường thẳng d. 

7. Cho tam giác vuông ABC ,A= 90 độ. Trên nửa mặt phẳng bờ AC không chứa điểm B, kẻ tia CX sao cho CA là tia phân giác của gócBCx.Từ A kẻ AE vuông Có, từ B kẻ BD vuông AE. Gọi AH là đường cao của tam giác ABC. Chứng minh rằng :

a, A là trung điểm của DE 

b, DHE=90 độ 

8. Cho tam giác ABC có A bằng 90 độ,AB=8 cm,BC =17cm.Trên nửa mặt phẳng bờ AC ko chứa điểm B, vẽ tia CD vuông với AC và CD=36cm.Tính tổng độ dài các đoạn thẳngAB+BC+CD+DA. 

4

Bài 1:

A C B

Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)

Độ dài cạnh AC: 28 - 7 = 21 (cm)

Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:

\(BC^2=AC^2+AB^2\)

Hay \(BC^2=21^2+28^2\)

\(\Rightarrow BC^2=441+784\)

\(\Rightarrow BC^2=1225\)

\(\Rightarrow BC=35\left(cm\right)\)

Bài 2:

A B C D

Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:

\(AB^2=AD^2+BD^2\)

\(\Rightarrow AD^2=AB^2-BD^2\)

Hay \(AD^2=17^2-15^2\)

\(\Rightarrow AD^2=289-225\)

\(\Rightarrow AD^2=64\)

\(\Rightarrow AD=8\left(cm\right)\)

Trong tam giác ABC có:

\(AD+DC=AC\)

\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)

Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:

\(BC^2=BD^2+DC^2\)

Hay \(BC^2=15^2+9^2\)

\(\Rightarrow BC^2=225+81\)

\(\Rightarrow BC^2=306\)

\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)

15 tháng 1 2017

Dùng hình của bạn Mai nhé.

Kẽ DP và EQ \(⊥\)HK tại P và Q.

Xét \(\Delta DPA\)và \(\Delta AHB\)

\(\hept{\begin{cases}\widehat{DPA}=\widehat{AHB}=90\\DA=AB\\\widehat{PDA}=\widehat{HAB}\left(phu\widehat{PAD}\right)\end{cases}}\)

\(\Rightarrow\Delta DPA=\Delta AHB\)

\(\Rightarrow DP=AH\left(1\right)\)

Xét \(\Delta EQA\)và \(\Delta AHC\)

\(\hept{\begin{cases}\widehat{EQA}=\widehat{CHA}=90\\EA=CA\\\widehat{QEA}=\widehat{HCA}\left(phu\widehat{QAE}\right)\end{cases}}\)

\(\Rightarrow\Delta EQA=\Delta AHC\)

\(\Rightarrow EQ=AH\left(2\right)\)

Từ (1) và (2) \(\Rightarrow DP=EQ\)

Xét \(\Delta DPK\)và \(\Delta EQK\)

\(\hept{\begin{cases}\widehat{DPK}=\widehat{EQK}=90\\DP=EQ\\\widehat{DKP}=\widehat{EKQ}\end{cases}}\)

\(\Rightarrow\Delta DPK=\Delta EQK\)

\(\Rightarrow DK=EK\)

Vậy K là trung điểm của DE

15 tháng 1 2017

Hình đây anh @alibaba

A B C H E D K

11 tháng 7 2019

A B C N M

a) Xét tam giác vuông ABM và tam giác vuông NCA có:

NC=AB( gt)

CA=BM ( gt)

=> Tam giác ABM = Tam giác NCA 

b) Xét  tam giác vuông NCA và tam giác vuông BAC có:

AC chung 

NC=BA

=> Tam giác NCA =Tam giác BAC

=> ^NAC =^BCA

mà hai góc trên ở vị trí so le trong

=> NA//BC (1)

c) Xét tam giác vuông ABC và tam giác vuông BMA có:

AB chung

AC=BM

=> Tam giác vuông ABC = Tam giác vuông BMA

=> ^MAB=^ABC

mà hai góc trên ở vị trí so le trong 

=> MA//CB (2)

từ (1) , (2) => N, A, M thẳng hàng 

Ta lại có: NA=AM ( Tam giác ABM =tam giác NCA)

=> A là trung điểm MN

7 tháng 2 2018

Câu hỏi của Nguyễn Đức Hiếu - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo bài tương tự tại đây nhé.