K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2015

bạn tự vẽ hình nha

tam giác BAC vuông can tại a suy ra bac=90,abc=acb=45 và ab=ac

gọi I là giao điểm của các tia phân giác trong tam giác ABC suy ra AI là tia phân giác của tg ABC

gọi G là giao điểm của dh và bi,n là giao diem của ak và be

BE,CD lân lượt là tia phân giác của tg ABC suy ra abe=cbe=acd=bcd=22.5

suy ra tg BIC cân tại i suy ra ib=ic

cmđ tg dgb=hgb(g c g) suy ra db=bh

cmđ tg dbi=hbi(c g c) suy ra di =ih và bdi=bhi

cmđ tg abn=kbn( g c g) suy ra ab=bk 

ta có bd+da=ba

va bh+hk=bk

mà bd=bh,ba=bk

suy ra da=hk

ta có bdc=bac+acd=90+22.5=112.5

mà bdc=bhi

suy ra bhi=112.5 suy ra ihk=67.5

và ida=67.5

cmđ tg ida=ihk(cg c) suy ra da=hk và ia=ik

cmd dib=45 mà dib=eic(2 góc đối đỉnh) suy ra eic=45 độ cmđ tg dib=eic(g c g)  suy ra db=ec

ta có db+da=ab

và ec+ea=ac

mà db=ec,ab=ac

nên ad=ae

cmđ tg dai=eai(c g c) suy ra dia=eia

cmđ dia=eia=67.5

ta có adi=aid=67.5 suy ra tg dai cân tai a suy ra ad=ai mà ad=hk và ai=ik suy ra hk=ik (1)

cmđ ikh=45(do hik=ihk=67.5/tam giác cân )

cmđ kic=22.5

ta có kic=cki=22.5 suy ra tg ikc cân tại k suy ra ik=kc(2)

từ 1 và 2 suy ra  hk=kc

chỗ nào ko hiểu thì cứ hỏi mình ,tab cho mình nếu đúng nha

1 tháng 2 2018

A A C C B B E E D D I I M M G G J J H H K K

a) Do tam giác ABC vuông cân nên \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABE}=\widehat{ACD}\)

Xét tam giác vuông ABE và tam giác vuông ACD có:

AB = AC (gt)

\(\widehat{ABE}=\widehat{ACD}\)

\(\Rightarrow\Delta ABE=\Delta ACD\)  (Cạnh góc vuông - góc nhọn kề)

\(\Rightarrow BE=CD;AE=AD\)

b) I là giao điểm của hai tia phân giác góc B và góc C của tam giác ABC nên AI cũng là phân giác góc A.

Do tam giác ABC cân tại A nên AI là phân giác đồng thời là đường cao và trung tuyến.

Vậy thì \(\widehat{AMC}=90^o;BM=MC=AM\)

Từ đó suy ra tam giác AMC vuông cân tại M.

c) Gọi giao điểm của DH, AK với BE lần lượt là J và G. 

Do DH và AK cùng vuông góc với BE nên ta có 

\(\Delta BDJ=\Delta BHJ;\Delta BAG=\Delta BKG\Rightarrow BD=BH;BA=BK\)

\(\Rightarrow HK=AD\)

Mà AD = AE nên HK = AE.    (1)

Do tam giác BAK cân tại B, có \(\widehat{B}=45^o\Rightarrow\widehat{BAK}=\frac{180^o-45^o}{2}=67,5^o\)

\(\Rightarrow\widehat{GAE}=90^o-67,5^o=22,5^o=\frac{\widehat{IAE}}{2}\)

Suy ra AG là phân giác góc IAE.

Từ đó ta có \(\widehat{KAC}=\widehat{ICA}\left(=22,5^o\right)\)

\(\Rightarrow\Delta AKC=\Delta CIA\left(g-c-g\right)\Rightarrow KC=IA\)    

Lại có tam giác AIE có AG là phân giác đồng thời đường cao nên nó là tam giác cân, hay AI = AE. Suy ra KC = AE  (2)

Từ (1) và (2) suy ra HK = KC.

13 tháng 2 2018

Xét tam giác AEC= tam giác ADB(g-c-g)

suy ra AE=AD từ đó BE=DC

13 tháng 2 2018

có CE Cắt BD tại I suy ra AI là p/g suy ra AM vuông góc

1 tháng 2 2018

Câu hỏi của Nguyễn Thùy Linh - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

1 tháng 2 2018

Câu hỏi của Nguyễn Thùy Linh - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

25 tháng 1 2019

a, xét tam giác ABE và tam giác ACD có:

AC=AB(gt)

góc A chung

góc ABE = góc ACD( do ABC= góc ACB, tia p/giác)

suy ra tam giác ABE= tam giác ACD(g.c.g)

suy ra BE=CD, AE=AD(đpcm)

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:a) ∆ABE = ∆ADC b) Góc BMC = 120oBài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).a) Chứng minh: EM + HC = NH.b) Chứng minh: EN // FM.Bài 3:Cho...
Đọc tiếp

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:

a) ∆ABE = ∆ADC b) Góc BMC = 120o

Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).

a) Chứng minh: EM + HC = NH.

b) Chứng minh: EN // FM.

Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.

Chứng minh rằng : Góc PCQ = 45o

Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.

a) Chứng minh rằng: BE = CD; AD = AE.

b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.

c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.

Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM = EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN.

c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

0