K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2018

Vẽ hình dùm đi bạn r giải hộ cho :)) Đề đọc khó hiểu tí 

8 tháng 3 2020

1 d A B C M N

22 tháng 1 2022

-CN VUÔNG GÓC VỚI NM 1

-BM VUÔNG GÓC VỚI MN 2

THEO ĐỊNH LUẬT TỪ VUÔNG GÓC ĐẾN SONG SONG \(\Rightarrow\)CN SONG SONG VỚI BM.

\(\Rightarrow\)NC VUÔNG GÓC VỚI BC HAY GÓC NCB =90 ĐỘ. 3

TỪ 1, 2,3 SUY RA CBMN LÀ HÌNH CHỮ NHẬT \(\Rightarrow\)CN=BM

XÉT 2 TAM GIÁC MAB(  GÓC N =90 ĐỘ) VÀ TAM GIÁC NVA ( GÓC M = 90 ĐỘ )CÓ 

CA=AB( GT)

CN=BM( CMT)

\(\Rightarrow\)HAI TAM GIÁC TRÊN BẰNG NHAU ( CẠNH GÓC VUÔNG-CẠNH GÓC VUÔNG)

20 tháng 6 2016

a, Ta có:

góc CAN + BAM + BAC = 180 độ 

mà góc BAC = 90 ( tam giác ABC vuông cân tại A )

 \(\Rightarrow\)BAM + CAN = 90 độ ( 1 )

Xét tam giác MBA vuông tại M , ta có:

BAM + ABM  = 90 độ ( tổng 2 góc nhọn trong tam giác vuông ) ( 2 )

Từ ( 1 ) và ( 2 ) 

\(\Rightarrow\)CAN + BAM = BAM + ABM 

\(\Rightarrow\)CAN = ABM 

Xét tam giác vuông MAB và tam giác vuông NCA , ta có :

AB = AC ( tam giác ABC vuông cân tại A )

CAN = ABM 

\(\Rightarrow\)\(\Delta\)MAB = \(\Delta\)NCA ( ch - gn )

b, Vì \(\Delta MAB=\Delta NCA\)(CMT)

\(\Rightarrow\)AM = CN ( 2 cạnh tương ứng )

Xét \(\Delta MBA\)vuông tại M , ta có :

\(BM^2+AM^2=AB^2\)( định lý Py - ta - go )

mà AM = CN ( CMT )

\(\Rightarrow BM^2+CN^2=AB^2\)( ĐPCM)

20 tháng 6 2016

a) Đường thẳng d đi qua A mà k cắt BC => d // BC (1)

; BM  |  d ; CN  |  d => BM // CN (2)

Từ (1) và (2) => BM = CN (tính chất đoạn chắn)

Xét hai tam giác vuông MAB và NCA có :

AB = DC (do tam giác ABC vuông cân tại A)

BM = CD (cmt)

\(\Rightarrow\Delta MAB=\Delta NCA\) (cạnh huyền - cạnh góc vuông)

b) Từ \(\Delta MAB=\Delta NCA\) (câu a) \(\Rightarrow\widehat{A}=\widehat{C}\) và \(\widehat{B}=\widehat{A}\)

\(\Rightarrow\widehat{B}=\widehat{C}\) \(\Rightarrow\widehat{MAB}=\widehat{NAC}\) (3) (vì cụng phụ với 2 góc bằng nhau)

; mà \(\widehat{BAC}+\widehat{MAB}+\widehat{NAC}=180^o\) (kề bù) , \(\widehat{BAC}=90^o\)

\(\Rightarrow\widehat{MAB}+\widehat{NAC}=90^o\) (4)

Từ (3) và (4) \(\Rightarrow\widehat{MAB}=\widehat{NAC}=45^o\)

\(\Rightarrow\) Tam giác MAB vuông cân tại M

\(\Rightarrow AM=AB\)

Đã có BM = CN (cm a) \(\Rightarrow AM=CN\)

Xét tam giác vuông AMB có \(AB^2=BM^2+AM^2\) hay \(AB^2=BM^2+CN^2\)

13 tháng 2 2018

Làm ý a thôi!

A B C D E

a) \(\widehat{EAC}+\widehat{BAD}=180^o-90^o=90^o\)

Mà: \(\widehat{DBA}+\widehat{BAD}=90^o\)

=> \(\widehat{EAC}=\widehat{DBA}\)

Xét \(\Delta ABD\)và \(\Delta CAE\)

\(\hept{\begin{cases}AC=ABC\left(gt\right)\\\widehat{EAC}=\widehat{DBA}\\\widehat{EAC}=\widehat{BDA}\end{cases}}\)

\(\Rightarrow\Delta ABD=\Delta ACE\)

13 tháng 2 2018

a) Ta có : BAD + BAC + CAE = 180 => BAD+CAE=90 (BAC=90)

mà CAE + ECA = 90 =>BAD=ECA

Xét tam giác BDA và tam giác AEC có: 

AC=AB (gt)

BAD=ECA

BDA=CEA=90 

=> tam giác BDA= tam giác AEC

b) =>AD=EC(t.ứng)

ta có: BD2 + AD2 = AB2 hay BD2 + EC2 = AB2

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0