K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2017

AB=AC=15xsin45=\(\frac{15\sqrt{2}}{2}\)

21 tháng 3 2022

C

13 tháng 3 2020

A B C H 7 cm 2 cm 2 cm

Ta có: AC = AH + HC = 7 + 2 = 9 (cm)

 Vì AB = AC => AB = 9 cm

Áp dụng định lí Pi - ta - go vào t/giác AHB vuông tại H, ta có:

AB2 = AH2 + BH2

=> BH2 = AB2 - AH2 = 92 - 72 = 32

Áp dụng định lí Pi - ta - go vào t/giác AHC vuông tại H, ta có:

 BC2 = BH2 + HC2 = 32 + 22 = 36

=> BC = 6 (cm)

21 tháng 11 2021

sai bố nó hình r ạ

 

6 tháng 8 2019

Câu hỏi của Trần Dần - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo nhé!

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

23 tháng 1 2017

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

23 tháng 1 2017

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC

23 tháng 12 2020

a) Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E

có: BD là cạnh chung

góc ABD = góc EBD (gt)

\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)⇒ΔABD=ΔEBD(ch−gn)

b) ta có: \Delta ABD=\Delta EBD\left(pa\right)ΔABD=ΔEBD(pa)

=> AB = EB = 6 cm ( 2 cạnh tương ứng)

=> EB = 6 cm

Xét tam giác ABC vuông tại Acó: AB^2+AC^2=BC^2\left(py-ta-go\right)AB2+AC2=BC2(py−ta−go)

thay số: 6^2+8^2=BC^262+82=BC2

          \Rightarrow BC^2=100⇒BC2=100

              \Rightarrow BC=10cm⇒BC=10cm

mà E\in BCE∈BC

=> EB + EC = BC

thay số: 6 + EC = 10

                  EC = 10 - 6

               => EC = 4 cm

c) ta có: \Delta ABD=\Delta EBD\left(pa\right)ΔABD=ΔEBD(pa)

=> AD =  ED ( 2 cạnh tương ứng)

    AB = EB ( 2 cạnh tương ứng) (1)

Xét tam giác ADI vuông tại A và tam giác EDC vuông tại E

có: AD = ED ( chứng minh trên)

góc ADI = góc EDC ( đối đỉnh)

\Rightarrow\Delta ADI=\Delta EDC\left(cgv-gn\right)⇒ΔADI=ΔEDC(cgv−gn)

=> AI = EC ( 2 cạnh tương ứng)(2)

Từ (1);(2) => AB + AI = EB + EC

               => BI = BC

              => tam giác BIC cân tại B ( định lí tam giác cân)

d) ta có: \Delta ABD=\Delta EBD\left(pa\right)ΔABD=ΔEBD(pa)

=> AD = ED ( 2 cạnh tương ứng) (1)

Xét tam giác EDC vuông tại E

có: ED < DC ( định lí cạnh góc vuông, cạnh huyền) (2)

Từ (1);(2) => AD <DC