K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2019

Hình bạn tự vẽ

a) CMR: AH = AK:

Xét tam giác AHB vuông tại H và tam AKC vuông tại K, ta có:

AB = AC ( vì tam giác ABC cân tại A )

góc A chung

Do đó: tam giác AHB = tam giác AKC ( ch-gn )

Suy ra: AH = AK ( 2 cạnh tương ứng)

b) CMR: góc KAI = góc HAI:

Xét tam giác KAI vuông tại K và tam giác HAI vuông tại H, ta có:

AH = AK ( chứng minh câu a )

cạnh AI chung

Do đó: tam giác KAI = tam giác HAI ( ch-cgv)

suy ra: góc KAI = góc HAI ( 2 góc tương ứng )

c) CM: AM vuông góc BC tại M ( AM vuông góc tại M nhé bạn )

Xét tam giác BAM và tam giác CAM, có:

cạnh AM chung

AB = AC ( vì tam giác ABC cân tại A )

góc KAI = góc HAI ( chứng minh câu b )

do đó: tam giác BAM = tam giác CAM ( c-g-c)

suy ra: góc AMB = góc AMC ( 2 góc tương ứng )

ta có: góc AMB + góc AMC = 180 độ ( kề bù )

 hay 2. góc AMB = 180 độ

=> 180 độ : 2 = 90 độ

do đó: AM vuông góc BC tại M ( đpcm )

Câu d mình làm sau do máy mình hết pin rồi!

27 tháng 12 2021
Giúp mình bài này đi mà :<
8 tháng 2 2020

Tgiac ABC vuông cân tại A => AB = AC

Xét tgiac ACK vuông tại K => góc ACK + KAC = 90 độ

Lại có KAC + BAH (BAK) = BAC = 90 độ

=> góc KCA = BAH

Xét tgiac BAH và ACK có:

+ AB = AC
+ góc AHB = AKC = 90 độ

+ góc KCA = BAH (cmt)

=> tgiac BAH = ACK (ch-gn)

=> BH = AK (đpcm)

20 tháng 3 2021

vote cho tui nha

8 tháng 3 2022

noo

 

25 tháng 12 2015

tick đi  rồi tớ làm hộ cho

25 tháng 1 2017

A B C D H K M N O

tam giác ABC cân tại A suy ra AB=AC và góc ABC = góc ACB

ta có \(\widehat{ABC}+\widehat{ABM}=180^o\\ \widehat{ACB}+\widehat{ACN}=180^o\)mà \(\widehat{ABC}=\widehat{ACB}\)\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)

dễ thấy tam giác \(ABM=\Delta ACN\left(c.g.c\right)\)

suy ra AM = AN ( 2 cạnh tương ứng )

tam giác AMN có AM = AN suy ra tam giác AMN là tam giác cân

b) tam giác ABm = tam giác ACN suy ra góc MAB = góc NAC ( 2 góc tương ứng )

dễ thấy tam giác HBA = tam giác KCA ( cạnh huyền - góc nhọn )

suy ra BA = Ck ( 2 cạnh tương ứng ) 

c) \(\Delta AHK\)có AH=AK suy ra \(\Delta AHk\) là tam giác cân

\(\Delta AHK\)và  \(\Delta AMN\) có chung đỉnh

mà 2 tam giác này là 2 tam giác cân suy ra \(\widehat{AHK}=\widehat{AKH}=\widehat{AMN}=\widehat{ANM}\\ hay\widehat{AHK}=\widehat{AMN}\)

mà 2 góc này ở vị trí đồng vị bằng nhau suy ra HK//MN

d) kéo dài HB và CK cắt nhau tại O

nối AO

xét \(\Delta⊥AHO\)và \(\Delta⊥AKO\)

AO là cạnh huyền chung

AH = AK

do đó \(\Delta AHO=\Delta AKO\) ( cạnh huyền - cạnh góc vuông )

e) xét tam giác \(BAD\)và \(\Delta CAD\)

BA = CA ( tam giác ABC cân tại A )

DA = DC (gt)

AD là canh chung 

do đó \(\Delta BAD=\Delta CAD\left(c.c.c\right)\)

phù phù mệt quá còn mấy cái cuối gửi bn sau mk đi ngủ đã

26 tháng 1 2017

tiếp nhé

suy ra góc BAD = góc CAD ( 2 góc tương ứng )

vì tia AD nằm giữa 2 tia AB và AC nên AD là phân giác góc BAC (1)

ta có BH = CK ( cmt)

và HO = KO (cmt)

suy ra HO-HB=OK-CK ( vì B nằm giữa H và O , C nằm giữa O và K )

hay BO = OC

xét \(\Delta BAO\)và \(\Delta CAO\)có \(\hept{\begin{cases}AOchung\\BO=OC\left(cmt\right)\\BA=CA\left(gt\right)\end{cases}}\)

do đó \(\Delta BAO=\Delta CAO\left(c.c.c\right)\)

suy ra góc BAO = góc CAO ( 2 góc tương ứng )

vì tia AO nằm giữa 2 tia AB và AC suy ra AO là phân giác góc BAC (2)

từ (1) và (2) suy ra A;D;O thẳng hàng