Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H D E
a, Xét tam giác AHB và tam giác CHA ta có :
^AHB = ^CHA = 900
^ABH = ^CAH ( cùng phụ ^BAH )
Vậy tam giác AHB ~ tam giác CHA ( g.g )
b, Xét tam giác AEB và tam giác DAB ta có
^AEB = ^DAB = 900
^B _ chung
Vậy tam giác AEB ~ tam giác DAB ( g.g )
A B C H D 3 4
Xét \(\Delta ABC\)\(\perp\) tại \(A\)
Áp dụng định lí py - ta - go :
BC2 = AB2 + AC2
BC2 = 32 + 42
BC2 = 9 + 16
BC2 = 25
BC = 5 cm
Vậy BC = 5 cm .
Xét \(\Delta ABC\)có BD là đường phân giác \(\widehat{B}\)
\(\Rightarrow\)\(\frac{DA}{DC}=\frac{AB}{BC}\)\(\Rightarrow\) \(\frac{DA}{DC}=\frac{3}{5}\)\(\Rightarrow\) \(\frac{DA}{3}=\frac{DC}{5}\)\(=\frac{DA+DC}{3+5}=\frac{4}{8}=\frac{1}{2}\)
\(\Rightarrow\)\(\frac{DA}{3}=\frac{1}{2}\)\(\Rightarrow\)\(DA=\frac{3}{2}=1,5\)cm
Ta có : AC = AD + DC
4 = 1,5 + DC
\(\Rightarrow DC=2,5\)cm
Xét \(\Delta AHB\) và \(\Delta CAB\) có :
\(\widehat{AHB}\)\(=\)\(\widehat{CAB}\) ( cùng bằng 900 )
\(\widehat{B}\) chung
\(\Rightarrow\)\(\Delta AHB\)\(~\)\(\Delta CAB\) ( g - g )
Do \(\Delta AHB\) \(~\)\(\Delta CAB\)
\(\Rightarrow\)\(\frac{AB}{BH}=\frac{BC}{AB}\)\(\Rightarrow\)\(AB.AB=BH.BC\)\(\Rightarrow\)\(AB^2=BH.BC\)
a,Xét \(\Delta\) ABD và \(\Delta\) ACB,ta có:
Góc ABD = góc ACB(gt)
Góc A-chung
=>\(\Delta\) ABD \(\sim\) \(\Delta\) ACB(g.g)(đpcm).
b,Xét \(\Delta\) ABD ,có đường phân giác AE:
=>\(\dfrac{ED}{AD}=\dfrac{EB}{AB}\) <=>\(\dfrac{ED}{EB}=\dfrac{AD}{AB}\) (1)
Ta có: \(\Delta\) ABD \(\sim\) \(\Delta\) ACB(câu a)
=>\(\dfrac{AD}{AB}=\dfrac{AB}{AC}\) (2)
Từ (1) và (2) =>\(\dfrac{ED}{EB}=\dfrac{AB}{AC}\) (đpcm).
c,-.-đùa à.