K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2016

a,Tam giác ABC và DEC có : Góc C chung
Góc BAC = góc EDC (=90 độ)

=> ABC ~ DEC (g.g)

b,Áp dụng định lý Py ta go ta có : AB2 + AC2 = BC2

=> BC = Căn bậc hai của 34

Áp dụng tính chất đường phân giác để tính BA và DC nhé(vì số không tròn và thời gian có hạn nên mình không tính tiếp nữa)

c,Biết cạnh AB,AC ta có thể tính diện tích tam giác ABC.Mặc khác DEC ~ ABC,từ đò suy ra tỉ số ta có thể tính được cạnh DE và DC của tam giác.Từ đó có thể tính SDEC.

Lấy SABC- SDEC ta tính được SABDE

a: \(AC=\sqrt{20^2-16^2}=12\left(cm\right)\)

BD là phân giác

=>AD/AB=CD/BC

=>AD/4=CD/5=(AD+CD)/(4+5)=12/9=4/3

=>AD=16/3cm; CD=20/3cm

b: Xét ΔABD vuông tại A và ΔHCD vuông tại H có

góc ADB=góc HDC

=>ΔABD đồng dạng với ΔHCD

AH
Akai Haruma
Giáo viên
4 tháng 3 2023

Lời giải:
a. 

Áp dụng định lý Pitago:

$AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-16^2}=12$ (cm)

Áp dụng tính chất tia phân giác:

$\frac{AD}{CD}=\frac{AB}{BC}=\frac{16}{20}=\frac{4}{5}$

$\Rightarrow \frac{AD}{AD+CD}=\frac{4}{9}$

$\Rightarrow \frac{AD}{AC}=\frac{4}{9}\Rightarrow AD=\frac{4}{9}AC=\frac{4}{9}.12=\frac{16}{3}$ (cm)

$CD=AC-AD=12-\frac{16}{3}=\frac{20}{3}$ (cm)

b.

Xét tam giác $ABD$ và $HCD$ có:

$\widehat{BAD}=\widehat{CHD}=90^0$

$\widehat{BDA}=\widehat{CDH}$ (đối đỉnh)

$\Rightarrow \triangle ABD\sim \triangle HCD$ (g.g)

c.

Từ kết quả tam giác đồng dạng phần b suy ra:
$\frac{S_{HCD}}{S_{ABD}}=(\frac{CD}{BD})^2(*)$

Trong đó:

$CD=\frac{20}{3}$

$BD=\sqrt{AB^2+AD^2}=\sqrt{16^2+(\frac{16}{3})^2}=\frac{16\sqrt{10}}{3}(**)$

Từ $(*); (**)\Rightarrow \frac{S_{HCD}}{S_{ABD}}=\frac{5}{32}$

$\Rightarrow S_{HCD}=\frac{5}{32}S_{ABD}=\frac{5}{32}.\frac{AD}{AC}S_{ABC}$
$=\frac{5}{32}.\frac{16}{3.12}.\frac{AB.AC}{2}$

$=\frac{5}{32}.\frac{4}{9}.\frac{16.12}{2}=\frac{20}{3}$ (cm2)

9 tháng 3 2020

giúp mừn vs mừn k cho...........

9 tháng 3 2020

a) d là đường trung trực của BC nên B và C đối xứng qua d D đối xứng với A qua d nên đường thẳng đối xứng với AB qua d là DC do AB và CD đối xứng qua d nên AC=CD.

c) ta có đoạn thẳng đối xứng với AC qua d là DB vì d là đường trung trực của AD và BC nên AD vuông góc với d và BC vuông với d vậy AD//BC, do đó ABCD là hình thanh do AC đối xứng với BD qua d nên AC=DB vậy hình thanh ABCD có hai đường chéo bằng nhau nên là hình thang cân

Câu b mk ko bt nha

9 tháng 5 2022

 

xét Tam giác HBA và Tam giác ABC có
 B Chung
Góc H=A(=90 độ)
=> tam giác HBA Đồng dạng với tam giác giác ABC (g.g)
=> AH/AC=AB/BC
(BC)^2=AB^2+AC^2
BC^2=400
BC=20
AH/AC=AB/BC => AH=AB.AC/BC=16x12/20=9.6

21 tháng 9 2022

xét Tam giác HBA và Tam giác ABC có
 B Chung
Góc H=A(=90 độ)
=> tam giác HBA Đồng dạng với tam giác giác ABC (g.g)
=> AH/AC=AB/BC
(BC)^2=AB^2+AC^2
BC^2=400
BC=20
AH/AC=AB/BC => AH=AB.AC/BC=16x12/20=9.6

21 tháng 9 2022

Tự vẽ hình nha

a) xét tam giác HAB và tam giác ABC

góc AHB = góc ABC

góc CAB : chung

Suy ra : tam giác AHB ~ tam giác ABC ( g-g )

b) Áp dụng định lí py - ta - go vào tam giác ABC ta được :

AC2 + AB2 = BC2

162 + 122 = BC2

400          = BC2

=> BC = \sqrt{400}400= 20 ( cm )

ta có tam giác HAB ~ tam giác ABC ( câu a )

=> \frac{AH}{AC}=\frac{AB}{BC}hay\frac{AH}{16}=\frac{12}{20}ACAH=BCABhay16AH=2012

=> AH = \frac{12.16}{20}=9,62012.16=9,6( cm )

Độ dài cạnh BH là 

Áp dụng định lí py - ta - go vào tam giác HBA ta được : 

AH+ BH2 = AB2

BH2          = AB2 - AH2

BH2             = 122 - 9,62

BH2              = 51,84 

=> BH       = \sqrt{51,84}51,84 = 7,2 ( cm )

c) Vì AD là đường phân giác của tam giác ABC nên :

\frac{AB}{BD}=\frac{AC}{CD}\Leftrightarrow\frac{AB}{BC-CD}=\frac{AC}{CD}BDAB=CDACBCCDAB=CDAC

                    <=>   \frac{AB.CD}{CD\left(BC-CD\right)}=\frac{AC\left(BC-CD\right)}{CD\left(BC-CD\right)}CD(BCCD)AB.CD=CD(BCCD)AC(BCCD)

                    <=>   AB.CD               =   AC(BC - CD)

                    hay   12CD                 =   16.20 - 16CD

                     <=>  12CD+ 16CD      =   320

                     <=>             28CD      =   320

                     <=>                 CD     =    \frac{320}{28}\approx11.43\left(cm\right)2832011.43(cm)

Độ dài cạnh BD là :

BD = BC - CD

BD = 20 - \frac{320}{28}28320\approx 8,57 ( cm )

18 tháng 4 2023

loading...