K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2023

loading... c) Do M là trung điểm của BC (gt)

⇒ BM = MC

Xét hai tam giác vuông: ∆AHM và ∆DKM có:

MA = MD (gt)

∠AMH = ∠DMK (đối đỉnh)

⇒ ∆AHM = ∆DKM (cạnh huyền - góc nhọn)

⇒ HM = KM (hai cạnh tương ứng)

Ta có:

BK = BM + KM

CH = CM + HM

Mà BM = CM (cmt)

KM = HM (cmt)

⇒ BK = CH

d) Tứ giác ABDC có:

M là trung điểm của BC (gt)

M là trung điểm của AD (gt)

⇒ ABDC là hình bình hành

⇒ AB // DC và AB = DC

Tứ giác ABCE có:

I là trung điểm của AC (gt)

I là trung điểm của BE (gt)

⇒ ABCE là hình bình hành

⇒ AB // CE và AB = CE

Do AB // CE (cmt)

AB // DC (cmt)

⇒ C, D, E thẳng hàng (theo tiên đề Ơ-clít)

Ta có:

AB = CE (cmt)

AB = DC (cmt)

⇒ CD = CE

⇒ C là trung điểm của DE

6 tháng 12 2019

CÁC BẠN LÀM THÌ LÀM CẢ HỘ MÌNH NHÉ

7 tháng 12 2019

trả lời hộ mình câu hỏi này đi ạ

18 tháng 12 2023

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét ΔMBD và ΔMCA có

MB=MC

\(\widehat{BMD}=\widehat{CMA}\)

MD=MA

Do đó: ΔMBD=ΔMCA

=>\(\widehat{MBD}=\widehat{MCA}\)

mà hai góc này là hai góc ở vị trí so le trong

nên BD//AC

c: Xét ΔDKB vuông tại K và ΔAHC vuông tại H có

DB=AC

\(\widehat{DBK}=\widehat{ACH}\)

Do đó: ΔDKB=ΔAHC

=>BK=CH

d: Xét tứ giác ABCE có

I là trung điểm chung của AC và BE

=>ABCE là hình bình hành

=>AB//CE và AB=CE

Ta có; ΔMAB=ΔMDC

=>AB=DC

Ta có: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//DC

Ta có: AB//DC

AB//CE

DC,CE có điểm chung là C

Do đó: D,C,E thẳng hàng

ta có: AB=CD

AB=CE

Do đó: DC=CE

mà D,C,E thẳng hàng

nên C là trung điểm của DE

14 tháng 12 2023

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC
b: Xét ΔMAC và ΔMDB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMDB

=>\(\widehat{MAC}=\widehat{MDB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BD

c: ΔMAB=ΔMDC

=>\(\widehat{MBA}=\widehat{MCD}\)

Xét ΔABH vuông tại H và ΔDCK vuông tại K có

AB=DC

\(\widehat{ABH}=\widehat{DCK}\)

Do đó: ΔABH=ΔDCK

=>BH=CK

BH+HK=BK

CK+HK=CH

mà BH=CK

nen BK=CH

d: Xét tứ giác ABCE có

I là trung điểm chung của AC và BE

=>ABCE là hình bình hành

=>AB//CE và AB=CE

Ta có: AB//CE

AB//CD

CD,CE có điểm chung là C

Do đó: C,E,D thẳng hàng

Ta có: AB=EC

AB=CD

Do đó: EC=CD

mà C,E,D thẳng hàng

nên C là trung điểm của DE

18 tháng 12 2019

ai giúp mik vs đúng mik chooooo

a) Xét \(\Delta AMB\)và \(\Delta DMC\)có:

         MA = MD (gt)

         \(\widehat{AMB}=\widehat{DMC}\)(2 góc đối đỉnh)

          MB = MC (M là trung điểm của BC)

\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\)

b) Xét \(\Delta AMC\)và \(\Delta DMB\)có:

          MA = MD (gt)

          \(\widehat{AMC}=\widehat{DMB}\)(2 góc đối đỉnh)

           MC = MB (M là trung điểm của BC)

\(\Rightarrow\Delta AMC=\Delta DMB\left(c.g.c\right)\)

\(\Rightarrow\widehat{ACM}=\widehat{DBM}\)(2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow AC//BD\)

c) Ta có: \(\Delta AMC=\Delta DMB\)(theo b)

=> AC = BD (2 cạnh tương ứng)

Xét \(\Delta DBK\)và \(\Delta ACH\)có:

          \(\widehat{BKD}=\widehat{CHA}=90^o\left(gt\right)\)

          BD = AC (cmt)

          \(\widehat{DBK}=\widehat{ACM}\)(cm b)

\(\Rightarrow\Delta DBK=\Delta ACH\left(CH-GN\right)\)

=> BK = CH (2 cạnh tương ứng)

d) Ta có: \(\Delta AMB=\Delta DMC\)(theo a)

=> AB = CD (2 cạnh tương ứng)   (1)

     \(\widehat{ABM}=\widehat{DCM}\)(2 góc tương ứng)

Mà 2 góc ở vị trí so le trong => AB // CD (2)

Xét \(\Delta ABI\)và \(\Delta CEI\)có:

      AI = CI (I là trung điểm của AC)

      \(\widehat{AIB}=\widehat{CIE}\)(2 góc đối đỉnh)

       BI = EI (I là trung điểm của BE)

\(\Rightarrow\Delta ABI=\Delta CEI\left(c.g.c\right)\)

\(\Rightarrow AB=CE\)(2 cạnh tương ứng)   (3)

      \(\widehat{ABI}=\widehat{CEI}\)(2 góc tương ứng)(4)

Mà 2 góc này ở vị trí so le trong

=> AB // CE

Từ (1) và (3) => CD = CE (5)

Từ (2) và (4) => C,D,E thẳng hàng (6)

Từ (5) và (6) => C là trung điểm của DE

Bài 11: 

b: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AC//BD

1 tháng 2 2018

a) Xét tam giác AMB và tam giác DMC có:

BM = CM (gt)

AM =DM (gt)

\(\widehat{AMB}=\widehat{DMC}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)

b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)

Chúng lại ở vị trí so le trong nên AB //CD.

c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.

Suy ra MA = ME

Lại có MA = MD nên ME = MD.

d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.

Suy ra ED // BC

Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.

Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)

6 tháng 12 2021

NGU