Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hạ đường cao BH
Ta có:
\(S_{\Delta ABC}=\dfrac{1}{2}.BH.AC\)
\(=\dfrac{1}{2}.AB\)\(.\)\(\dfrac{BH}{AB}.AC\)
\(=\dfrac{1}{2}.AB.sin\left(\widehat{A}\right).AC\)( Điều phải chứng minh)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có \(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{B}=53^0\)
=>\(\widehat{C}=37^0\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
hay AH=4,8(cm)
a. Ta có: AB2 = 62 = 36
AC2 = 4,52 = 20,25
BC2 = 7,52 = 56,25
Vì AB2 + AC2 = 36 + 20,25 = 56,25 = BC2 nên tam giác ABC vuông tại A (theo định lí đảo Pi-ta-go)
Kẻ AH ⊥ BC
Ta có: AH.BC = AB.AC
b. Tam giác ABC và tam giác MBC có chung cạnh đáy BC, đồng thời SABC = SMBC nên khoảng cách từ M đến BC bằng khoảng cách từ A đến BC. Vậy M thay đổi cách BC một khoảng bằng AH nên M nằm trên hai đường thẳng x và y song song với BC cách BC một khoảng bằng AH.A B C D E
\(\cos^2\widehat{A}=\frac{AE^2}{AC^2}=\frac{AD^2}{AB^2}\)
Xét tam giác ADE và tam giác ABC có :
\(\frac{AD}{AB}=\frac{AE}{AC}\) \(\left(=\cos\widehat{A}\right)\)
\(\widehat{A}\) là góc chung
Do đó : \(\Delta ADE~\Delta ABC\left(c-g-c\right)\)
Mà tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng nên
\(\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2=\left(\frac{AE}{AC}\right)^2=\cos^2\widehat{A}\)\(\Rightarrow\)\(S_{ADE}=S_{ABC}.\cos^2\widehat{A}\) ( đpcm )
làm tạm 1 câu :v
\(S_{ADE}+S_{BCDE}=S_{ABC}.1=S_{ABC}\left(\sin^2\widehat{A}+\cos^2\widehat{A}\right)\)
\(\Rightarrow\)\(S_{ADE}+S_{BCDE}=S_{ABC}.\sin^2\widehat{A}+S_{ABC}.\cos^2\widehat{A}\)
\(\Leftrightarrow\)\(S_{BCDE}=S_{ABC}.\sin^2\widehat{A}\) ( do \(S_{ADE}=S_{ABC}.\cos^2\widehat{A}\) )
Cho tam giác vuông ABC ( \(\widehat{A}=90^0\)) có đường cao AH = 6 cm , BC = 10 cm. Tính \(S_{ABC}\)
A B C H
\(S_{\Delta ABC}=\frac{AH\cdot BC}{2}=\frac{6\cdot10}{2}=\frac{60}{2}=30\left(cm^2\right)\)
Vậy \(S_{\Delta ABC}=30cm^2\)