Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M D F E
Kí hiệu như trên hình.
Ta có : \(AF^2+MF^2=AE^2+EM^2=AM^2\)
\(BD^2+MD^2=BF^2+MF^2=BM^2\)
\(ME^2+EC^2=MD^2+DC^2=MC^2\)
Cộng các đẳng thức trên theo vế
\(\left(BD^2+CE^2+AF^2\right)+\left(MF^2+MD^2+ME^2\right)=\left(DC^2+EA^2+FB^2\right)+\left(EM^2+MF^2+MD^2\right)\)
\(\Rightarrow BD^2+CE^2+AF^2=DC^2+EA^2+FB^2\)
Cho tam giác ABC vuông tại A, M là trung điểm của AC. Vẽ MD vuông góc với BC ( D thuộc BC ) . Chứng minh : AB2 = BD2 - CD2 .
Từ I dựng đường thẳng vuông góc với AC và cắt BC tại E. Mà AB cũng vuông góc với AC => IE//AB => IE là đường trung bình của tam giác ABC => AB=2.IE và EB=EC=BC/2
=> \(AB^2=4.IE^2\)
Xét tam tg vuông EIC có
\(IE^2=ED.EC\) (Bình phương 1 cạnh góc vuông = tích của cạnh huyền và hình chiếu của cạnh góc vuông trên cạnh huyền)
\(\Rightarrow AB^2=4.IE^2=4.ED.EC\) (*)
Ta có \(EC=\frac{BC}{2}\) và \(ED=EC-CD=\frac{BC}{2}-CD\) Thay vào (*) ta có
\(AB^2=4.\left(\frac{BC}{2}-CD\right).\frac{BC}{2}=4.\left(\frac{BC^2}{4}-\frac{CD.BC}{2}\right)\)
\(AB^2=BC^2-2.CD.BC\) (**)
Mà \(BC=BD+CD\) Thay vào (**)
\(\Rightarrow AB^2=\left(BD+CD\right)^2-2.CD.\left(BD+CD\right)=BD^2+CD^2+2.BD.CD-2.BD.CD-2.CD^2\)
\(\Rightarrow AB^2=BD^2-CD^2\) (dpcm)
Bạn chép nhầm đề rồi nhé, phải sửa thành: "Chứng minh: \(BD^2+CE^2+AF^2=DC^2+EA^2+FB^2\)"
Tam giác DMC có MD \(\perp\) DC \(\rightarrow\) Tam giác MDC vuông tại D
\(\Rightarrow DC^2=MC^2-MD^2\) (định lý Pytago) (1)
Tương tự, ta cũng có:
Tam giác AME vuông tại E \(\Rightarrow AE^2=AM^2-ME^2\) (định lý Pytago) (2)
Tam giác BMF vuông tại F \(\Rightarrow BF^2=BM^2-MF^2\) (định lý Pytago) (3)
Từ (1), (2) và (3) \(\Rightarrow DC^2+AE^2+BF^2=CM^2-MD^2+AM^2-ME^2+BM^2-MF^2\) (4)
Chứng minh tương tự các ý trên, ta có
\(BD^2=BM^2-MD^2;CE^2=CM^2-ME^2;AF^2=AM^2-MF^2\)
\(\Rightarrow BD^2+CE^2+AF^2=BM^2-MD^2+CM^2-ME^2+AM^2-MF^2\) (5)
Từ (4) và (5) \(\Rightarrow\) \(BD^2+CE^2+AF^2=DC^2+AE^2+FB^2\) (đpcm)
Chúc bạn học tốt!
A C B M D E F