K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2017

A B C H M

kẻ AH\(\perp BC\left(H\in BC\right)\)

ta có: AB2+AC2=AH2+BH2+AH2+HC2

= 2AH2+(MB-MH)2+(MC+MH)2

=2AH2+MB2+MH2-2MB.MH+MC2+MH2+2MC.MH

=2(AH2+MH2)+2MB2(vì MB=MC)

=2AM2+2.\(\frac{BC^2}{4}\)=\(2AM^2+\frac{BC^2}{2}\)(đfcm)

vậy \(AB^2+AC^2=2AM^2+\frac{BC^2}{2}\)

a: \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

\(\Leftrightarrow AB^2+AC^2-BC^2=2\cdot AB\cdot AC\cdot cosA\)

\(\Leftrightarrow BC^2=AB^2+AC^2-2\cdot AB\cdot AC\cdot cosA\)

b: loading...

NV
11 tháng 8 2020

Kẻ đường cao BH \(\Rightarrow AH=AB.cosA\)

Theo Pitago: \(AB^2=AH^2+BH^2\)

Và: \(BC^2=BH^2+CH^2=BH^2+\left(AC-AH\right)^2\)

\(=BH^2+AC^2-2AC.AH+AH^2\)

\(=AB^2+AC^2-2AC.AH\)

\(=AB^2+AC^2-2AC.AB.cosA\)

16 tháng 7 2017

trong tam giac vuong ABH Cco \(AH^2+BH^2=AB^2\Rightarrow AH^2=AB^2-BH^2\left(1\right)\)

                                   AHC co \(AH^2+HC^2=AC^2\Rightarrow AH^2=AC^2-HC^2\left(2\right)\)

tu (1) va(2 ) suy ra \(AB^2-BH^2=AC^2-HC^2\Rightarrow AB^2+HC^2=AC^2+BH^2\)