K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2016

Xét tam giác ABC và MN//BC

Hai tam giác AMN và ABC, có:

   - góc AMN = góc ABC (đồng vị)

   - góc ANM = góc ACB (đồng vị)

   - BAC là góc chung

Mặt khác, theo hệ quả định lí Ta-lét, hai tam giác AMN và ABC có 3 cặp cạnh tương ứng tỉ lệ:

    \(\frac{AM}{AB}=\frac{MN}{BC}=\frac{AN}{AC}\)

Nên tam giác AMN đồng dạng với tam giác ABC

    \(\Rightarrow\frac{AM}{AB}=\frac{AN}{AC}=\frac{1}{3}\)

    \(\Rightarrow\frac{AN}{18}=\frac{1}{3}\)

    \(AN=\frac{18.1}{3}=6\)

Do AC = AN + NC

    \(\Rightarrow NC=AC-AN=18-6=12\)

Vậy NC có độ dài là 12 cm

a: AN+CN=AC

=>AN=20-15=5cm

Xét ΔABC có AM/AB=AN/AC

nên MN//BC

b: Xét ΔAMN và ΔNPC có

góc AMN=góc NPC(=góc B)

góc ANM=góc NCP

=>ΔAMN đồng dạng với ΔNPC

19 tháng 3 2018

M nằm giữa A và B nên: AB = AM + MB = 10cm

Theo định lí Ta let ta có:

Bài tập: Định lí Ta-lét trong tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án A

21 tháng 4 2019

a) MN // BC. Áp dụng định lí Ta-let, ta có :

\(\frac{BM}{AB}=\frac{CN}{AC}\)hay \(\frac{2}{8}=\frac{CN}{10}\)\(\Rightarrow CN=2,5\)

b) MN // BP ; NP // BM nên tứ giác MNPB là hình bình hành

\(\Rightarrow\Delta BMN=\Delta NPB\left(c.g.c\right)\)hay \(\Delta BMN\approx\Delta NPB\)

c) BM = 2 ; AB = 8 nên AM = 6

MNPB là hình bình hành nên NP = BM

Xét \(\Delta NPC\)và \(\Delta AMN\)có : 

\(\widehat{PNC}=\widehat{MAN}\left(dv\right);\widehat{NPC}=\widehat{AMN}\left(=\widehat{ABC}\right)\)

\(\Rightarrow\)\(\Delta NPC\)\(\approx\)\(\Delta AMN\)( g.g )

\(\Rightarrow\)\(\frac{S_{NPC}}{S_{AMN}}=\left(\frac{NP}{AM}\right)^2=\left(\frac{BM}{AM}\right)^2=\left(\frac{2}{6}\right)^2=\frac{1}{9}\)

6 tháng 2 2020

ta có AB=AM+MB=11+8=19 (cm)

xát tgAMN và tgABC có gA chung

                                       gAMN = gABC (hai góc đồng vị của MN//BC)

=>tgAMN ~ tgABC (g.g)

=>AM/AB=AN/AC=>11/19=AN/38

=>AN=22 (cm)

ta có AC=AN+NC=>NC = 38-22=16(cm)

Ta có: AM+MB=AB(M nằm giữa A và B)

hay MB=AB-AM=12cm-8cm=4cm

Ta có: AN+NC=AC(N nằm giữa A và C)

hay AN+NC=18cm

Xét ΔABC có MN//BC(M∈AB; N∈AC)

nên \(\frac{AM}{MB}=\frac{AN}{NC}\)(định lí Ta lét)

\(\Leftrightarrow\frac{AM}{AN}=\frac{MB}{NC}\)

hay \(\frac{8}{AN}=\frac{4}{NC}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được

\(\frac{8}{AN}=\frac{4}{NC}=\frac{8+4}{AN+NC}=\frac{12}{18}=\frac{2}{3}\)

Do đó:

\(\left\{{}\begin{matrix}\frac{8}{AN}=\frac{2}{3}\\\frac{4}{NC}=\frac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AN=\frac{8\cdot3}{2}=12cm\\NC=\frac{4\cdot3}{2}=6cm\end{matrix}\right.\)

Vậy: AN=12cm; NC=6cm