Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ điểm M kẻ đường thẳng Mx song song với DC cắt AB tại H
xét tam giác AHM có : DI // HM (DC // Mx)
AI = IM (gt)
=> DI là đường trung bình của tam giác AHM
=> AD =DH (1)
xét tam giác BDC có: DC // HM (DC // Mx)
BM = MC (gt)
=> HM là đường trung bình của tam giác BDC
=> DH = HB (2)
từ (1) và (2) => AD = DH = HB
=> AD=1/2 DB
=> đpcm
Chúc bạn học tốt
từ điểm M kẻ đường thẳng mx song song với DC cắt AB tại H
xét tam giác AHM có : DI song song HM ( DC song song Mx )
AI=IM (gt)
suy ra DI là đường trung bình của tam giá AHM
suy ra AD= DH (1)
xét tam giác BDC có: DC song song HM( DC song song Mx )
BM = MC (gt)
suy ra HM là đường trung bình của tam giác BDC
suy ra DH =HB (2)
TỪ (1) VÀ (2) suy ra AD =DH =HB
suy ra AD=1/2 DB HAY BD =2AD
suy ra đpcm
Do không có dụng cụ đo nên hình vẽ khá xấu,thông cảm
A B M C I E F N
Lấy N đối xứng với I qua M.Khi đó tứ giác IBNC là hình bình hành suy ra NC//BI;BN//CI
Theo Thales ta có:
\(\frac{AI}{IN}=\frac{AE}{AC};\frac{AI}{IN}=\frac{AF}{AB}\)
Khi đó:\(\frac{AE}{AC}=\frac{AF}{AB}\Rightarrow EF//AB\)
B A C M D K I
Bài làm:
Vì M là trung điểm BC, K là trung điểm BD
=> MK là đường trung bình của tam giác BDC
=> MK // DC <=> MK // DI
Mà I là trung điểm của AM => D là trung điểm AK => AD = DK (1)
Mà K là trung điểm BD => BK = KD = 1/2 BD (2)
Từ (1) và (2) => AD= 1/2 BD
Ta có M,K là trung điểm BC,BD
\(\rightarrow\)MK là đường trung bình \(\Delta\)BCD
\(\rightarrow\)KM//CD
→KM//DI
Mà II là trung điểm AM\(\rightarrow\)DI là đường trung bình \(\Delta\)AKM
\(\rightarrow\)D là trung điểm AK\(\rightarrow\)DA=DK
Lại có Klà trung điểm BD\(\rightarrow\)KD=KB
\(\rightarrow\)DA=DK=KB
\(\rightarrow\)AD=\(\frac{1}{2}\)BD
A B C M M M I I K K K D D K
#Cừu