K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2020

B A C M D K I

Bài làm:

Vì M là trung điểm BC, K là trung điểm BD

=> MK là đường trung bình của tam giác BDC

=> MK // DC <=> MK // DI

Mà I là trung điểm của AM => D là trung điểm AK => AD = DK  (1)

Mà K là trung điểm BD => BK = KD = 1/2 BD (2)

Từ (1) và (2) => AD= 1/2 BD

25 tháng 8 2020

Ta có M,K là trung điểm BC,BD

\(\rightarrow\)MK là đường trung bình \(\Delta\)BCD

\(\rightarrow\)KM//CD

→KM//DI

Mà II là trung điểm AM\(\rightarrow\)DI là đường trung bình \(\Delta\)AKM

\(\rightarrow\)D là trung điểm AK\(\rightarrow\)DA=DK

Lại có Klà trung điểm BD\(\rightarrow\)KD=KB

\(\rightarrow\)DA=DK=KB

\(\rightarrow\)AD=\(\frac{1}{2}\)BD

A B C M M M I I K K K D D K

#Cừu

31 tháng 8 2017

Giải

Ta thấy đường trung bình tam giác ABC nên BEDC là hình thang, lại có\(BM=MC\cdot DN=NC\Rightarrow MN\)   là đường trung bình hình thang BEDC hay MN ong song DE và BC. Lại dùng đường trung bình thì 

\(MI=KN=\frac{DE}{2}\left(1\right)\)

\(MN=\frac{DE^2+BC}{2}\Rightarrow IK=MN-2MI=\frac{DE+BC}{2}-DE\)

\(=\frac{BC-DE}{2}=\frac{DE^2}{2}\left(BC=2DE\right)\left(2\right)\)

\(\Leftrightarrow Q\cdot E\cdot D\Rightarrowđcpm\)

12 tháng 9 2017

[​IMG]
Mình sẽ làm câu b trước rồi từ đó suy ra a
b)Giả sử MP=PQ=QN đã có từ trước
Xét △△ ABC có E là trung điểm AB,D là trung điểm AC \Rightarrow ED là đường trung bình của △△ ABC\Rightarrow ED//BC và ED=BC/2(*)
Xét hình thang EDBC có M là trung điểm BE,N là trung điểm CE \Rightarrow MN//BC( (*) (*) )
Từ (*)( (*) (*) ) \Rightarrow ED//MN
Xét △△ BED có M là trung điểm BE,MP//ED \Rightarrow MP là đường trung bình của △△ BED \Rightarrow MP=ED/2
Tương tự cũng có NQ=ED/2
Ta có :MP=PQ
\Leftrightarrow ED2=BC−ED2ED2=BC−ED2
\Leftrightarrow ED=BC-ED
\Leftrightarrow 2ED=BC
Tương tự với NQ và PQ cũng rứa
Vậy muốn NQ=PQ=MP thì 2ED=BC Điều này là hiển nhiên ở (*)
từ đó phát triển lên câu a)NQ=PQ=MP=1/2ED
\Rightarrow MN=3/2ED \RightarrowMN=3/4BC
Đúng thì thanks giùm nha

6 tháng 9 2020

Từ điểm M kẻ đường thẳng Mx song song với DC cắt AB tại H 
xét tam giác AHM có : DI // HM (DC // Mx) 
AI = IM (gt) 
=> DI là đường trung bình của tam giác AHM 
=> AD =DH (1) 
xét tam giác BDC có: DC // HM (DC // Mx) 
BM = MC (gt) 
=> HM là đường trung bình của tam giác BDC 
=> DH = HB (2) 
từ (1) và (2) => AD = DH = HB 
=> AD=1/2 DB 
=> đpcm 

Chúc bạn học tốt

6 tháng 9 2020

từ điểm M kẻ đường thẳng mx song song với DC cắt AB tại H
xét tam giác AHM có : DI song song HM ( DC song song Mx )
AI=IM (gt)
suy ra DI là đường trung bình của tam giá AHM
suy ra AD= DH (1)
xét tam giác BDC có: DC song song HM( DC song song Mx )
BM = MC (gt) 
suy ra HM là đường trung bình của tam giác BDC 
suy ra DH =HB (2) 
TỪ (1) VÀ (2) suy ra AD =DH =HB 
suy ra AD=1/2 DB HAY BD =2AD 
suy ra đpcm
 

29 tháng 8 2016

cần gấp

21 tháng 7 2019

Hình bạn tự vẽ nhé

Giải: Kẻ \(MG//BD\) ta có: \(\hept{\begin{cases}MG//BD\\MB=MC\left(gt\right)\end{cases}}\Rightarrow\) MG là đường trung bình tam giác BCD.

\(\Rightarrow DG=CG=\frac{1}{2}CD\Rightarrow DG=AD\)

Xét tam giác AMG ta có: \(\hept{\begin{cases}MG//DI\\AD=DG\end{cases}}\Rightarrow AI=IM\left(đpcm\right)\) (tc đường tb tam giác) 

AH
Akai Haruma
Giáo viên
23 tháng 9 2023

Lời giải:
Áp dụng định lý Menelaus cho tam giác $ABM$ và $D,I,C$ thẳng hàng:
$\frac{AD}{DB}.\frac{IM}{IA}.\frac{CB}{CM}=1$

$\Rightarrow \frac{1}{2}.\frac{IM}{IA}.2=1$

$\Rightarrow \frac{IM}{IA}=1\Rightarrow IM=IA$ hay $I$ là trung điểm của $AM$.

Tiếp tục áp dụng định lý Menelaus cho tam giác $CBD$ có $I,A,M$ thẳng hàng:

$\frac{MC}{MB}.\frac{ID}{IC}.\frac{AB}{AD}=1$
$\Rightarrow 1.\frac{ID}{IC}.3=1$

$\Rightarrow \frac{ID}{IC}=\frac{1}{3}\Rightarrow CI=3DI$

AH
Akai Haruma
Giáo viên
23 tháng 9 2023

Hình vẽ:

27 tháng 10 2017

gọi E là trung điểm của DC
CM :ME//DB
mà AD=1/2DC\RightarrowAD=DE=EC
=> D là trung điểm của AE
xét tam giác AME có D là trung điểm của AE;DI//ME(cmt)
=> DI là đường trung bình của tam giác AME
=> I là trung điểm của AE
=> AI=IM (dpcm)

15 tháng 1 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi E là trung điểm của DC

Trong ΔBDC, ta có:

M là trung điểm của BC (gt)

E là trung điểm của CD (gt)

Nên ME là đường trung bình của ∆ BCD

⇒ME // BD (tính chất đường trung bình tam giác)

Suy ra: DI // ME

AD = 1/2 DC (gt)

DE = 1/2 DC (cách vẽ)

⇒ AD = DE và DI//ME

Nên AI= IM (tính chất đường trung bình của tam giác).