K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
KN
3 tháng 2 2020
Gọi K đối xứng với F qua M.
Tứ giác FBKC là hình bình hành\(\Rightarrow FC//BK\)
\(\Rightarrow\widehat{BKM}=\widehat{MEB};\widehat{BKM}=\widehat{MFA}\).Mà \(\widehat{AEM}=\widehat{MFA}\Rightarrow\widehat{BKM}=\widehat{MEB}\Rightarrow\)Tứ giác BMKE nội tiếp
\(\Rightarrow\widehat{BEK}=\widehat{DAE};\widehat{BEK}=\widehat{FMD}=\widehat{FAD}=\widehat{DAE}\)
\(\Rightarrow\widehat{BEK}=\widehat{DAE}\Rightarrow AD//EK\)
Do N là trung điểm của EF, M là trung điểm của FK \(\Rightarrow MN//EK\)
\(\Rightarrow MN//AD\left(đpcm\right)\)
Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng l: Đoạn thẳng [A, M] Đoạn thẳng m: Đoạn thẳng [N, E] Đoạn thẳng n: Đoạn thẳng [B, E] Đoạn thẳng p: Đoạn thẳng [N, M] Đoạn thẳng q: Đoạn thẳng [N, B] Đoạn thẳng r: Đoạn thẳng [A, K] O = (0.22, 2.54) O = (0.22, 2.54) O = (0.22, 2.54) Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm E: Giao điểm của j, k Điểm E: Giao điểm của j, k Điểm E: Giao điểm của j, k Điểm N: Điểm trên j Điểm N: Điểm trên j Điểm N: Điểm trên j Điểm D: Giao điểm của i, k Điểm D: Giao điểm của i, k Điểm D: Giao điểm của i, k Điểm M: Giao điểm của c, i Điểm M: Giao điểm của c, i Điểm M: Giao điểm của c, i Điểm K: Trung điểm của E, D Điểm K: Trung điểm của E, D Điểm K: Trung điểm của E, D Điểm I: Giao điểm của g, p Điểm I: Giao điểm của g, p Điểm I: Giao điểm của g, p
a. Do AN và AM là hai tia phân giác nên \(AN⊥AM\). Vậy thì MN là đường kính của đường tròn O.
Theo tính chất đường kính dây cung, MN vuông góc với BC tại trung điểm BC.
b. Do tam giác AED vuông tại A, K là trung điểm DE nên \(\widehat{EAK}=\widehat{AEK}=\frac{sđ\widebat{NC}-sđ\widebat{AB}}{2}\)(Góc có đỉnh bên ngoài đường tròn)
Lại có MN là đường kính nên \(sđ\widebat{NB}+sđ\widebat{BM}=sđ\widebat{NC}+sđ\widebat{CM}\);
Lại do AM là phân giác nên \(\widehat{BAM}=\widehat{CAM}\Rightarrow sđ\widebat{BM}=sđ\widebat{CM}\) (Góc nội tiếp)
Vậy thì \(sđ\widebat{NB}=sđ\widebat{NC}\)
Khi đó \(\widehat{EAK}=\widehat{AEK}=\frac{sđ\widebat{NC}-sđ\widebat{AB}}{2}=\frac{sđ\widebat{NB}-sđ\widebat{AB}}{2}=\frac{sđ\widebat{AN}}{2}=\widehat{ABN}\) (góc nội tiếp).