K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

đặt AB=c, BC=a, AC=c.
để chứng minh bđt trên ta sẽ áp dụng công thức: \(S_{\Delta ABC}=\frac{1}{2}.a.b.sinC=\frac{1}{2}.b.c.sinA=\frac{1}{2}.a.c.sinB\)
ta có: \(\frac{sinA}{sinB+sinC}+\frac{sinB}{sinA+sinC}+\frac{sinC}{sinA+sinB}\)
       \(=\frac{a.b.c.sinA}{a.b.c.sinB+a.b.c.sinC}+\frac{a.b.c.sinB}{a.b.c.sinA+a.b.c.sinC}+\frac{a.b.c.sinC}{a.b.c.sinA+a.b.c.sinB}\)
        ;\(=\frac{2S_{\Delta ABC}.a}{2S_{\Delta ABC}.b+2S_{\Delta ABC}.c}+\frac{2S_{\Delta ABC}.b}{2.S_{\Delta ABC}.c+2.S_{\Delta ABC}.b}+\frac{2S_{\Delta ABC}.c}{2S_{\Delta ABC}.b+2S_{\Delta ABC}.a}\)
         \(=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\).
Ta có: \(\frac{a}{b+c}>\frac{a}{a+b+c};\frac{b}{a+c}>\frac{b}{a+b+c};\frac{c}{a+b}>\frac{c}{a+b+c}\)
nên \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1.\)
Ta sẽ chứng minh bđt phụ: \(\frac{a}{b+c}< \frac{2a}{a+b+c}\left(1\right)\)
Thật vậy: \(\left(1\right)\Leftrightarrow a^2< a\left(b+c\right)\Leftrightarrow a< b+c\)(đúng vì a,b,c là độ dài 3 cạnh của tam giác).
tương tự: \(\frac{b}{a+c}< \frac{2b}{a+b+c};\frac{c}{a+b}< \frac{2c}{a+b+c}\).
suy ra: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a}{b+c}+\frac{2b}{a+c}+\frac{2c}{a+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\).
vậy bất đẳng thức đã được chứng minh.
 

4 tháng 8 2016

câu này khó ghê

17 tháng 9 2017

kẻ đường cao AH. Ah= h 

khi đó: tam giác ACH vuông tại H có

               sin C = h/b

      => a.b.sin C= a.h

      => 1/2 a.b. sin C = a.h/2= SABC

7 tháng 9 2017

đặt P = sinA/2.sinB/2.sinC/2 
2P = (2sinA/2.sinB/2).sinC/2 = [cos(A/2-B/2) - cos(A/2+B/2)].sin(C/2) 
2P = [cos(A/2-B/2) - sin(C/2)].sin(C/2) = sin(C/2).cos(A/2-B/2) - sin²(C/2) 
8P = 4sin(C/2).cos(A/2-B/2) - 4sin²(C/2) 
1-8P = 4sin²(C/2) - 4sin(C/2).cos(A/2-B/2) + cos²(A/2-B/2) + 1 - cos²(A/2-B/2) 
1-8P = [2sin(C/2) - cos(A/2-B/2)]² + sin²(A/2-B/2) ≥ 0 (*) 
=> P ≤ 1/8

18 tháng 7 2017

A B C D E x

Qui ước: Ax là p.g của A , đường vuông góc BD,CE

Ta có: \(\sin\frac{A}{2}=\frac{BD}{AB}=\frac{CE}{AC}=\frac{BD+CE}{AB+CA}\)(t/c dãy ts = nhau)

dễ dàng chứng minh \(BD+CE\le BC\)nên ta có đpcm

Dấu = xảy ra khi tam giác ABC cân ở A

19 tháng 7 2017

 tắt quá . mà có 2 phần mà sao ngắn vậy

15 tháng 7 2019

1) a) Từ C dựng đường cao CF 

Ta có: \(\sin A=\frac{CF}{b};\sin B=\frac{CF}{a}\)\(\Rightarrow\)\(\frac{\sin A}{\sin B}=\frac{\frac{CF}{b}}{\frac{CF}{a}}=\frac{a}{b}\)\(\Leftrightarrow\)\(\frac{a}{\sin A}=\frac{b}{\sin B}\) (1) 

Từ A dựng đường cao AH 

Có: \(\sin B=\frac{AH}{c};\sin C=\frac{AH}{b}\)\(\Rightarrow\)\(\frac{\sin B}{\sin C}=\frac{\frac{AH}{c}}{\frac{AH}{b}}=\frac{b}{c}\)\(\Leftrightarrow\)\(\frac{b}{\sin B}=\frac{c}{\sin C}\) (2) 

(1), (2) => đpcm 

b) từ a) ta có: \(\hept{\begin{cases}\sin A=\frac{CF}{b}\\\cos A=\frac{AF}{b}\end{cases}\Leftrightarrow\hept{\begin{cases}CF=b.\sin A\\AF=b.\cos A\end{cases}}}\)

Có: \(BF=c-AF=c-b.\cos A\)

Py-ta-go: 

\(a^2=BF^2+CF^2=\left(c-b.\cos A\right)^2+\left(b.\sin A\right)^2=c^2+b^2.\cos^2A+b^2.\sin^2A-2bc.\cos A\)

\(=b^2\left(\sin^2A+\cos^2A\right)+c^2-2bc.\cos A=b^2+c^2-2bc.\cos A\) (đpcm) 

c) Có: \(\hept{\begin{cases}\cos A=\frac{AF}{b}\\\cos B=\frac{BF}{a}\end{cases}\Rightarrow b.\cos A+a.\cos B=b.\frac{AF}{b}+a.\frac{BF}{a}=AF+BF=c}\)

bài 2 mk có làm r bn ib mk gửi link nhé 

AH
Akai Haruma
Giáo viên
21 tháng 7 2017

Lời giải:

Theo hệ thức lượng trong tam giác:\(\sin ^2a=\frac{1-\cos 2a}{2}\)

Áp dụng vào bài toán và sử dụng định lý hàm cos:

\(\sin ^2\frac{A}{2}=\frac{1-\cos A}{2}=\frac{1-\frac{b^2+c^2-a^2}{2bc}}{2}=\frac{a^2-(b-c)^2}{4bc}\)

Ta cần CM \(\frac{a^2-(b-c)^2}{4bc}\leq \left (\frac{a}{b+c}\right)^2\Leftrightarrow (ab+ac)^2-(b^2-c^2)^2\leq 4a^2bc\)

\(\Leftrightarrow a^2b^2+a^2c^2\leq 2a^2bc+(b^2-c^2)^2\)

\(\Leftrightarrow (b^2-c^2)^2-a^2(b-c)^2\geq 0\Leftrightarrow (b-c)^2[(b+c)^2-a^2]\geq 0\)

BĐT luôn đúng do với \(a,b,c\) là độ dài ba cạnh tam giác thì \(b+c>a\leftrightarrow (b+c)^2>a^2\)

Vậy \(\sin ^2\frac{A}{2}\leq \left (\frac{a}{b+c}\right)^2\Leftrightarrow \sin \frac{A}{2}\leq \frac{a}{b+c}\) (đpcm)

Tương tự : \(\sin \frac{B}{2}\leq \frac{b}{a+c},\sin \frac{C}{2}\leq \frac{c}{a+b}\)

\(\Rightarrow \sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\leq \frac{abc}{(a+b)(b+c)(c+a)}\)

Theo BĐT AM-GM: \((a+b)(b+c)(c+a)\geq 2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8abc\Rightarrow \frac{abc}{(a+b)(b+c)(c+a)}\leq \frac{1}{8}\)

\(\Rightarrow \sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\leq \frac{1}{8}\) (đpcm)

19 tháng 7 2017

@Akai Haruma giúp mình với