Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C c H b a h
kẻ AH vuông góc với BC
đặt AH = h . xét hai tam giác vuông AHB và AHC , ta có :
sin B = \(\frac{AH}{AB}\), sin C = \(\frac{AH}{AC}\)
do đó \(\frac{sinB}{sinC}=\frac{AH}{AB}\cdot\frac{AC}{AH}=\frac{h}{c}\cdot\frac{b}{h}=\frac{b}{c}\)
suy ra \(\frac{b}{sinB}=\frac{c}{sinC}\)
tương tự \(\frac{a}{sinA}=\frac{b}{sinB}\)
vậy suy ra dpcm
cái đường thẳng cắt tam giác đó mk không bt nó thừ đâu tới, bạn bỏ cái đấy đi nhá
ta có ab\(^2\)+ ac\(^2\) = 90 + 160
=250
lại có bc\(^2\) =250
\(\Rightarrow\)ab\(^2\) + ac\(^2\) = bc\(^2\) ( = 250 )
\(\Rightarrow\)tam giác abc vuông tại a
\(\sin b\) = \(\frac{ac}{bc}\) = \(\frac{40}{50}\) = \(\frac{4}{5}\)
\(\tan c\)= \(\frac{ab}{ac}\) = \(\frac{30}{40}\) = \(\frac{3}{4}\)
\(\widehat{b}\)\(\approx\) 53.1
\(\widehat{c}\) \(\approx\) 36.9
áp dụng htl vào tam giác abc vuông tại a có
ah * bc = ab * ac
\(\Rightarrow\)ah = \(\frac{ab\cdot ac}{bc}\) =24(dvdd)
áp dụng đ/lí pytago vào tam giác ahb vuông tại h có
bh\(^2\)= ab\(^2\)- ah\(^2\)=324
\(\Rightarrow\)bh = \(\sqrt{324}\)= 18 (dvdd)
áp dụng đ/lí pytago vào tam giác ahc vuông tại h có
ch\(^2\)= ac\(^2\)-ah\(^2\) = 1024
\(\Rightarrow\)ch=\(\sqrt{1024}\)=32(dvdd)
\(S_{ABC}=\frac{bc\sin A}{2}=\frac{ac\sin B}{2}=\frac{ab\sin C}{2}=\frac{abc}{4R}\)
+ Từ \(\frac{bc\sin A}{2}=\frac{ac\sin B}{2}\Rightarrow b\sin A=a\sin B\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}\left(1\right)\)
+ Từ \(\frac{ac\sin B}{2}=\frac{ab\sin C}{2}\Rightarrow c\sin B=b\sin C\Rightarrow\frac{b}{\sin B}=\frac{c}{\sin C}\left(2\right)\)
+ Từ \(\frac{bc\sin A}{2}=\frac{abc}{4R}\Rightarrow\sin A=\frac{a}{2R}\Rightarrow\frac{a}{\sin A}=2R\left(3\right)\)
Từ (1) (2) (3) \(\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\left(dpcm\right)\)
A B C H K
Từ A kẻ đường cao AH (H thuộc BC) , Từ B kẻ đường cao BK (K thuộc AC)
Ta có : sinA=BKABsinA=BKAB ; sinB=AHABsinB=AHAB ; sinC=AHACsinC=AHAC
⇒ABsinC=ABAHAC=AB.ACAH⇒ABsinC=ABAHAC=AB.ACAH ; ACsinB=ACAHAB=AB.ACAHACsinB=ACAHAB=AB.ACAH
⇒csinC=bsinB⇒csinC=bsinB (1)
Lại có : BK=sinC.BC⇒BCsinA=BCBKAB=BC.ABBK=AB.BCsinC.BC=ABsinCBK=sinC.BC⇒BCsinA=BCBKAB=BC.ABBK=AB.BCsinC.BC=ABsinC
⇒asinA=csinC⇒asinA=csinC (2)
Từ (1) và (2) ta có : asinA=bsinB=csinCasinA=bsinB=csinC (Đpcm)
Đã xảy ra lỗi rồi. Bạn thông cảm vì sai sót này.
Ta có:
Áp dụng hệ quả của bất đẳng thức Cauchy cho ba số không âm
trong đó với , ta có:
Tương tự, ta có:
Cộng ba bất đẳng thức và , ta được:
Khi đó, ta chỉ cần chứng minh
Thật vậy, bất đẳng thức cần chứng minh được quy về dạng sau: (bất đẳng thức Cauchy cho ba số )
Hay
Mà đã được chứng minh ở câu nên luôn đúng với mọi
Dấu xảy ra
Vậy,
A B C H K
Từ A kẻ đường cao AH, H thuộc BC. Từ B kẻ đường cao BK, K thuộc AC
Ta có: \(\sin A=\frac{BK}{AB};\sin B=\frac{AH}{AB};\sin C=\frac{AH}{AC}\)
\(\Rightarrow\frac{AB}{\sin C}=\frac{AB}{\frac{AH}{AC}}=\frac{AB.AC}{AH}\)
\(\Rightarrow\frac{AC}{\sin B}=\frac{AC}{\frac{AH}{AB}}=\frac{AB.AC}{AH}\)
\(\Rightarrow\frac{c}{\sin C}=\frac{b}{\sin B}1\)
Lại có:
\(BK=\sin C.BC\Rightarrow\frac{BC}{\sin A}=\frac{BC}{\frac{BK}{AB}}=\frac{BC.AB}{BK}=\frac{AB.BC}{\sin C.BC}=\frac{AB}{\sin C}\)
\(\Rightarrow\frac{a}{\sin A}=\frac{c}{\sin C}2\)
Từ 1 và 2, ta có:
\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
\(\RightarrowĐPCM\)