Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
Xét tam giác BFC và tam giác BEC có :
BC chung
FC = BE
\(\widehat {BFC} = \widehat {BEC} = {90^o}\)
( cạnh huyền – cạnh góc vuông)
\( \Rightarrow \widehat C = \widehat B\) ( 2 góc tương ứng ) (1)
Xét tam giác CFA và tam giác ADC ta có :
CF = AD
AC chung
\(\widehat {ADC} = \widehat {AFC} = {90^o}\)
(cạnh huyền – cạnh góc vuông)
\( \Rightarrow \widehat C = \widehat A\)(2 góc tương ứng ) (2)
Từ (1) và (2) \( \Rightarrow \widehat C = \widehat A = \widehat B\) \( \Rightarrow \)Tam giác ABC là tam giác đều do có 3 góc bằng nhau
a) Tự vẽ hình
xét tg BCF vuong tai f co bm=mc(gt) => mf la trg tuyên thuoc cạnh huyen nên mf= mc=mb hay mf=1/2 bc (1)
tuong tu tg bec vuog tai e có me = 1/2 bc(2)
tu (1) va (2) có me= mf => tg mef cân
b) tứ giác FECB nội tiếp trong đuong tròn có tam là M và đuong kính là BC nên 2 góc đối fec + fbc =180o
c) góc feb = fcb ( cùng chắn cung bf)
c)
Cho tam giác ABC nhọn. Kẻ các đường vuông góc AH,BE,CF.
Chứng minh rằng: AH+BE+CF<Chu vi tam giác ABC
Xét ΔAFC vuông tại F và ΔAEB vuông tại E có
CF=BE
góc ACF=gócABE
=>ΔAFC=ΔAEB
=>AC=AB
Xét ΔCEB vuông tại E và ΔCDA vuông tại D có
EB=DA
góc C chung
=>ΔCEB=ΔCDA
=>CB=CA=AB
=>ΔABC đều