K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2023

Tham khảo:

Xét tam giác BFC và tam giác BEC có :

BC chung

FC = BE

\(\widehat {BFC} = \widehat {BEC} = {90^o}\)

 ( cạnh huyền – cạnh góc vuông)

\( \Rightarrow \widehat C = \widehat B\) ( 2 góc tương ứng ) (1)

Xét tam giác CFA và tam giác ADC ta có :

CF = AD

AC chung

\(\widehat {ADC} = \widehat {AFC} = {90^o}\)

(cạnh huyền – cạnh góc vuông)

\( \Rightarrow \widehat C = \widehat A\)(2 góc tương ứng ) (2)

Từ (1) và (2) \( \Rightarrow \widehat C = \widehat A = \widehat B\) \( \Rightarrow \)Tam giác ABC là tam giác đều do có 3 góc bằng nhau 

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng \(a, \frac {AB+AC}{2}\)\(b,BE+CF < \frac{3}{2}BC\)\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CNBài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH ,...
Đọc tiếp

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng 

\(a, \frac {AB+AC}{2}\)

\(b,BE+CF < \frac{3}{2}BC\)

\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)

Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CN

Bài 3 . Cho tam giác ABC , góc B = 45, đường cao AH , phân giác BD của tam giác ABC , biết góc BDA = 450 . Chứng minh HD//AB 

Bài 4 . Cho tam giác ABC không vuông , các đường trung trực của AB , AC cắt nhau tại O , cắt BC theo thứ tự M,N . Chứng minh AO là phân giác của góc MAN .

Bài 5 : Cho tam giác ABC nhọn , đường cao BD , CE cắt nhau tại H . Lấy K sao cho AB là trung trực của HK . Chứng minh góc KAB = góc KCB 

0

a) Vì MD là trung trực AB trong ∆AMD 

=> ∆AMD cân tại A 

=> AM = AD 

Vì DN là trung trực AC trong ∆ADN 

=>∆ADN cân tại A 

=> AD = AN 

Mà AM = AD 

=> AM = AN 

=> ∆AMN cân tại A 

a: góc AFH+góc AEH=180 độ

góc AFH=góc AEH=90 độ

=>AEHF nội tiếp đường tròn đường kính AH

=>NF=NE

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp đường tròn đường kính BC

=>MF=ME

=>NM là trung trực của EF

b: góc MEN=góc MEH+góc NEH

=góc MBE+góc NHE

=góc MBE+90 độ-góc MBE=90 độ

=>góc MFN=90 độ

sorry mk ko bít làm dù đag hok lớp 7!!!!!!!

5645756