Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AC<AB
nên \(\widehat{B}< \widehat{C}\)
\(\Leftrightarrow90^0-\widehat{B}>90^0-\widehat{C}\)
hay \(\widehat{BAH}>\widehat{CAH}\)
b: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABD cân tại A
a: AC<AB
nên ˆB<ˆCB^<C^
⇔900−ˆB>900−ˆC⇔900−B^>900−C^
hay ˆBAH>ˆCAHBAH^>CAH^
b: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABD cân tại A
AB = 13 cm, BC = 21 cm.
Từ đó, chu vi của tam giác ABC là 54 cm.
* Tự vẽ hình nha !
Xét △AHB vuông tại H, ta có:
BH2 = AB2 - AH2 (Py-ta-go)
BH2 = 132 - 122 = 25
=> BH = √25 =5 (cm)
Xét △AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (Py-ta-go)
AC2 = 122 + 162 = 400
=> AC = √400 = 20 (cm)
Ta có: BC = BH + HC = 5 + 16 = 21 (cm)
Chu vi tam giác ABC:
AB + AC + BC = 13 + 20 + 21 = 54 (cm)
Vậy ....................
a) Do tam giác AEB vuông cân tại A nên \(\left\{{}\begin{matrix}\widehat{EAB}=90^o\\AE=AB\end{matrix}\right.\)
Ta thấy \(\widehat{MEA}=\widehat{BAH}\) vì chúng cùng phụ với \(\widehat{EAM}\)
Xét 2 tam giác HAB vuông tại H và MEA vuông tại M, ta có:
\(AE=AB\left(cmt\right),\widehat{MEA}=\widehat{BAH}\left(cmt\right)\)
\(\Rightarrow\Delta HAB=\Delta MEA\left(ch-gn\right)\) \(\Rightarrow AH=ME\) (1)
Tương tự, ta cũng có \(\Delta HAC=\Delta NFA\Rightarrow HC=AN\) (2)
Từ (1) và (2) suy ra \(EM+HC=AH+AN\) hay \(EM+HC=HN\) (đpcm)
b) Từ \(\Delta HAC=\Delta NFA\Rightarrow AH=NF\)
Từ đó suy ra \(ME=NF\left(=AH\right)\)
Xét tam giác MNE và NMF, ta có:
\(ME=NF\left(cmt\right),\widehat{EMN}=\widehat{FNM}\left(=90^o\right)\), MN là cạnh chung.
\(\Rightarrow\Delta MNE=\Delta NMF\left(c.g.c\right)\)
\(\Rightarrow\widehat{ENM}=\widehat{FMN}\) \(\Rightarrow\) EN//FM (2 góc so le trong bằng nhau)
Ta có đpcm.
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AB^2=12^2+16^2=400\)
hay AB=20(cm)
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow HC^2=AC^2-AH^2=20^2-12^2=256\)
hay HC=16(cm)
Ta có: BH+HC=BC(H nằm giữa B và C)
nên BC=16+16=32(cm)
Chu vi của tam giác ABC là:
\(C_{ABC}=AB+BC+AC=20+32+20=72\left(cm\right)\)
Lời giải:
Áp dụng định lý Pitago cho tam giác $AHC$ vuông tại $H$:
$HC=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm)
Áp dụng định lý Pitago cho tam giác $AHB$ vuông tại $H$:
$AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20$ (cm)
Chu vi tam giác $ABC$:
$AB+BC+AC=AB+BH+CH+AC=20+16+16+20=72$ (cm)
(tự vẽ hinh)
* Do AH vuông góc vs BC(gt)
=> Tam giác AHC và tam giác AHC là tam giác vuông tại H
* Tam giác vuông AHC có:
AC^2=AH^2+HC^2(ĐL py-ta-go)
20^2=12^2+HC^2
400=144+HC^2
HC^2=400-144
HC^2=256
HC^2=16^2(vì HC>0)
=>HC=16 cm
* Tam giác AHB có:
AB^2=AH^2+HB^2(DL py-ta-go)
AB^2=12^2+5^2
AB^2=144+25
AB^2=169
AB^2=13^2(vì AB>0)
=>AB=13 cm
*Ta có:
BH+HC=BC(AH vuống góc với BC tại H)
5+16=BC
=>BC=21cm
*Chu vi tam giác ABC:
AB+BC+AC=13+21+20=53cm
* Tam giác AHB và tam giác AHC là tam giác vuông trong vì:
AH vuông góc với BC tại H
AH cát BC tại hH tạo thành 2 tam giác vuông trong tam giác ABC
Giải thích các bước giải:
a. Xét hai tam giác vuông \(\Delta ABE\)và \(\Delta HBE\)
Ta có: BE cạnh chung
\(\widehat{ABE}=\widehat{HBE}\)(góc đối)
Vậy \(\widehat{ABE}=\widehat{HBE}\)(Cạnh huyền - góc nhọn)
b) Xét \(\Delta ABF\)và \(\widehat{HBF}\)có:
BF cạnh chung
\(\widehat{ABF}=\widehat{HBF}\)(góc đối)
AB=HB (cạnh tương ứng, chứng minh a)
Vậy \(\Delta ABF=\Delta HBF\left(c.g.c\right)\)
Vậy AF=HF (cạnh tướng ứng)
Và \(\widehat{F_1}=\widehat{F_2}\) (góc tương ứng) (1)
Xét \(\Delta AEF\)và \(\Delta HEF\)
Ta có: EF cạnh chung
\(\widehat{AEF}=\widehat{HEF}\)(góc tướng ứng, cm câu a)
AE=HE (cạnh tương ứng, chứng minh a)
Vậy \(\Delta AEF=\Delta HEF\)(c.g.c)
Vậy \(\widehat{F_3}=\widehat{F_4}\)(góc tương ứng) (2)
\(\widehat{F_1}=\widehat{F_3}\)(góc đối) (3)
Ta lại có: \(\widehat{F_1}+\widehat{F_2}+\widehat{F_3}+\widehat{F_4}=360\)
Từ (1)(2)(3) \(\Rightarrow\)\(\widehat{F_1}=\widehat{F_2}=\widehat{F_3}=\widehat{F_4}=90\)
Ta có AF=HF
Vậy BE là đường trung trực của AH
Vậy,......................
#Châu's ngốc
Áp dụng định lý Pitago, ta có: \(AC^2=AH^2+HC^2\)
\(\Rightarrow20^2=12^2+HC^2\)
\(\Rightarrow HC^2=20^2-12^2\)
\(\Rightarrow HC^2=400-144=256\)
\(\Rightarrow HC=16\left(cm\right)\)
Áp dụng định lý Pitago, ta có: \(AB^2=BH^2+AH^2\)
\(\Rightarrow AB^2=5^2+12^2\)
\(\Rightarrow AB^2=25+144=169\)
\(\Rightarrow AB=13\left(cm\right)\)
Vậy CV tam giác ABC là
\(20+5+16+13=54\left(cm\right)\)