K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2018

A B C H K G

Vẽ tam giác ABC với các chiều cao tương ứng là AH, BK, CG.

Ta có \(\Delta AHC\sim\Delta BKC\left(g-g\right)\Rightarrow\frac{AH}{BK}=\frac{AC}{BC}\Rightarrow\left(\frac{AH}{BK}\right)^2=\left(\frac{AC}{BC}\right)^2=\frac{AC^2}{BC^2}\)

Tương tự \(\Delta AHB\sim\Delta CGB\left(g-g\right)\Rightarrow\frac{AH}{CG}=\frac{AB}{BC}\Rightarrow\left(\frac{AH}{CG}\right)^2=\left(\frac{AB}{BC}\right)^2=\frac{AB^2}{BC^2}\)

Ta có \(\frac{1}{AH^2}=\frac{1}{BK^2}+\frac{1}{CG^2}\Leftrightarrow\frac{AH^2}{BK^2}+\frac{AH^2}{CG^2}=1\Leftrightarrow\frac{AB^2}{BC^2}+\frac{AC^2}{BC^2}=1\Leftrightarrow\frac{AB^2+AC^2}{BC^2}=1\)

\(\Leftrightarrow AB^2+AC^2=BC^2\Leftrightarrow\) tam giác ABC vuông tại A.

16 tháng 8 2019

A B C M I r D E F

a) Gọi tâm của đường tròn nội tiếp \(\Delta\)ABC là I. (I) tiếp xúc với BC,CA,AB tại D,E,F

Ta có \(S_{BIC}=\frac{1}{2}ID.BC=r.\frac{BC}{2}\). Tương tự \(S_{CIA}=r.\frac{CA}{2};S_{AIB}=r.\frac{AB}{2}\)

Vậy \(S_{ABC}=r.\frac{BC+CA+AB}{2}=pr\)(đpcm).

b) Đặt \(BC=a,CA=b,AB=c,AM=m_A,BM=m_B,CM=m_C\)

Áp dụng công thức tính đường trung tuyến có \(m_A=\frac{\sqrt{2\left(b^2+c^2\right)-a^2}}{2}\)

\(\Rightarrow\frac{1}{m_A}=\frac{2}{\sqrt{2\left(b^2+c^2\right)-a^2}}\), Hoàn toàn tương tự đối với \(m_B,m_C\)

Từ đó \(\frac{1}{m_A}+\frac{1}{m_B}+\frac{1}{m_C}=\frac{2}{\sqrt{2\left(b^2+c^2\right)-a^2}}+\frac{2}{\sqrt{2\left(c^2+a^2\right)-b^2}}+\frac{2}{\sqrt{2\left(a^2+b^2\right)-c^2}}\)

Lại có \(r=\frac{S}{p}=\frac{\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}}{p}=\sqrt{\frac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}}\)(Công thức Heron)

\(=\frac{\sqrt{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}{2\sqrt{a+b+c}}\)

Kết hợp với giả thiết \(\frac{1}{m_A}+\frac{1}{m_B}+\frac{1}{m_C}=\frac{1}{r}\) suy ra:

\(\frac{1}{\sqrt{2\left(b^2+c^2\right)-a^2}}+\frac{1}{\sqrt{2\left(c^2+a^2\right)-b^2}}+\frac{1}{\sqrt{2\left(a^2+b^2\right)-c^2}}\)

\(=\frac{\sqrt{a+b+c}}{\sqrt{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}\)(1)

Áp dụng BĐT Cauchy: \(VT_{\left(1\right)}\le\frac{1}{\sqrt{\left(b+c\right)^2-a^2}}+\frac{1}{\sqrt{\left(c+a\right)^2-b^2}}+\frac{1}{\sqrt{\left(a+b\right)^2-c^2}}\)

\(=\frac{1}{\sqrt{a+b+c}}.\frac{\sqrt{\left(a+b-c\right)\left(b+c-a\right)}+\sqrt{\left(b+c-a\right)\left(c+a-b\right)}+\sqrt{\left(c+a-b\right)\left(a+b-c\right)}}{\sqrt{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}\)\(\le\frac{1}{\sqrt{a+b+c}}.\frac{a+b+c}{\sqrt{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}\)

\(=\frac{\sqrt{a+b+c}}{\sqrt{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}=VP_{\left(1\right)}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)<=> \(\Delta\)ABC đều (đpcm).

12 tháng 8 2020

Ap dung cong thuc \(r=\frac{b+c-a}{2}\) (b=AC,c=AB , cai nay ban tu chung minh nhe)

ta co \(\frac{r}{a}=\frac{b+c-a}{2a}\le\frac{\sqrt{2\left(b^2+c^2\right)}-a}{2a}=\frac{\sqrt{2.a^2}-a}{2a}=\frac{a\sqrt{2}-a}{2a}=\frac{\sqrt{2}-1}{2}\)

Dau = xay ra khi b=c hay tam giac ABC vuong can tai A