K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

Câu hỏi của Nhóc vậy - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo câu tương tự tại đây.

Với câu c, ta thấy \(sin\widehat{BAC}=\frac{\sqrt{2}}{2}\Rightarrow\widehat{BAC}=45^o\Rightarrow tan\widehat{BAC}=1\Rightarrow\frac{BC}{AH}=1\)

Vậy AH = BC.

5 tháng 1 2021

B M A E H O I C

b) Ta có : EA = EH ( gt )

Xét : tam giác MHA vuông tại M . có ME là trung tuyến

\(\Rightarrow ME=\frac{1}{2}AH\Rightarrow ME=EH\)

\(\Rightarrow\Delta MEH\)cân tại E

\(\Rightarrow\widehat{EMH}=\widehat{H_1}\left(1\right)\)

Ta lại có : \(OM=OC\left(=bk\right)\Rightarrow\Delta OMC\)cân tại O

\(\widehat{OMC}=\widehat{OCM}\left(2\right)\)

Mặt khác : Tam giác IHC vuông tại I => \(\widehat{ICM}+\widehat{H_1}=90^o\)

mà \(\widehat{H_1}=\widehat{H_2}\)( đối đỉnh ) \(\Rightarrow\widehat{ICM}+\widehat{H_2}=90^o\left(3\right)\)

Từ (1)(2) và (3) => \(\widehat{OMC}+\widehat{EHM}=90^o\)

mà \(\widehat{OME}=\widehat{OMC}+\widehat{EHM}=90^o\)

\(\Rightarrow ME\perp OM\)tại M

Vậy : ME là tiếp tuyến của đường tròn tâm O ( đpcm )

29 tháng 12 2017

ABCOMNHE

a) Do M, N thuộc đường tròn đường kính BC nên \(\widehat{BMC}=\widehat{BNC}=90^o\Rightarrow BN\perp AC;CM\perp AB\)

Xét tam giác ABC có BN và CM là hai đường cao nên H là trực tâm, vậy thì AH cũng là đường cao của tam giác hay \(AH\perp BC\)

b) Do AMH và ANH là các tam giác vuông có chung cạnh huyền AH nên AMHN là tứ giác nội tiếp đường tròng tâm E, bán kính EH. Vậy thì \(\widehat{MHE}=\widehat{MNA}\) (Hai góc nội tiếp cùng chắn cung AM)

Lại có EM = EH nên \(\widehat{MHE}=\widehat{HME}\)

Vậy nên \(\widehat{HME}=\widehat{MNA}\)   (1)

Lại có do OM = OC nên \(\widehat{OMC}=\widehat{OCM}\) mà \(\widehat{OCM}=\widehat{BNM}\)  (Hai góc nội tiếp cùng chắn cung BM)

Vậy nên \(\widehat{OMC}=\widehat{BNM}\)     (2)

Từ (1) và (2) suy ra \(\widehat{HME}+\widehat{OMC}=\widehat{MNA}+\widehat{MNB}\Rightarrow\widehat{EMO}=\widehat{ANH}=90^o\)

Vậy ME là tiếp tuyến của đường tròn (O)

Xét tam giác MEO và NEO có: Cạnh EO chung, EM = EN, OM = ON 

\(\Rightarrow\Delta MEO=\Delta NEO\left(c-g-c\right)\)

\(\Rightarrow S_{MEO}=S_{NEO}\Rightarrow S_{MEO}=\frac{1}{2}S_{MENO}\)

\(\Rightarrow\frac{1}{2}ME.MO=\frac{1}{4}.MN.EO\Rightarrow MN.OE=2ME.MO\)

c) Do tứ giác AMHN nội tiếp nên \(\widehat{MAH}=\widehat{MNH}\)

Mà \(\widehat{MCB}=\widehat{MNH}\Rightarrow\widehat{MAH}=\widehat{MCB}\)

Vậy thì \(\Delta AMH\sim\Delta CMB\left(g-g\right)\Rightarrow\frac{CM}{AM}=\frac{CB}{AH}=1\)

Lại có xét tam giác vuông AMC, \(tan\widehat{BAC}=\frac{MC}{AM}=1.\)

27 tháng 12 2015

AH = BC => tam giác MBC =MHA ( tự cm)

=> BMH vuông cân tại M => NBA = BAN = 45

=>...

AH
Akai Haruma
Giáo viên
10 tháng 2 2024

Lời giải:
a. Ta có:

$\widehat{BNC}=\widehat{BMC}=90^0$ (góc nt chắn nửa đường tròn - cung BC)

$\Rightarrow BN\perp AC, CM\perp AB$

Tam giác $ABC$ có 2 đường cao $BN, CM$ cắt nhau tại $H$ nên $H$ là trực tâm của tam giác $ABC$.

b. Gọi $D$ là giao của $AH$ và $BC$. Do $H$ là trực tâm tam giác $ABC$ nên $AH\perp BC$ tại $D$.

Tam giác $BMC$ vuông tại $M$

$\Rightarrow$ trung tuyến $MO= \frac{BC}{2}=BO$ (đường trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền)

$\Rightarrow BOM$ là tam giác cân tại $O$

$\Rightarrow \widehat{OMB}=\widehat{OBM}=90^0-\widehat{BCM}$

$=90^0-\widehat{DCH}=\widehat{MHA}=\widehat{MHE}(1)$

$CM\perp AB$ nên $AMH$ là tam giác vuông tại $M$

$\Rightarrow ME=\frac{AH}{2}=EH$ (đường trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền)

$\Rightarrow MEH$ cân tại $E$

$\Rightarrow \widehat{MHE}=\widehat{EMH}(2)$

Từ $(1); (2)\Rightarrow \widehat{OMB}=\widehat{EMH}$

$\Rightarrow \widehat{OMB}+\widehat{OMC}=\widehat{EMH}+\widehat{OMC}$

$\Rightarrow \widehat{BMC}=\widehat{EMO}$

$\Rightarrow \widehat{EMO}=90^0$

$\Rightarrow EM\perp MO$ nên $EM$ là tiếp tuyến $(O)$
c.

Ta có:

$EM=\frac{AH}{2}=EN$

$OM=ON$

$\Rightarrow EO$ là trung trực của $MN$

Gọi $T$ là giao điểm $EO, MN$ thì $EO\perp MN$ tại $T$ và $T$ là trung điểm $MN$.

Xét tam giác $EMO$ vuông tại $M$ có $MT\perp EO$ thì:

$ME.MO = MT.EO = \frac{MN}{2}.EO$

$\Rightarrow 2ME.MO = MN.EO$

 

 

AH
Akai Haruma
Giáo viên
10 tháng 2 2024

Hình vẽ:

a: Xét (O) có

ΔBMC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBMC vuông tại M

Xét (O) có 

ΔBNC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBNC vuông tại N

Xét ΔBAC có

BN là đường cao ứng với cạnh huyền AC

CM là đường cao ứng với cạnh huyền AB

BN cắt CM tại H

Do đó: AH⊥BC

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

a: Xét (O) có

ΔBMC nội tiếp

BC là đường kính

Do đó: ΔBMC vuông tại M

Xét (O) có

ΔBNC nội tiếp
BC là đường kính

Do đó: ΔBNC vuông tại N

Xét ΔABC có

BN.CM là các đường cao

BN cắt CM tại H

DO đó; H là trực tâm

=>AH vuông góc với BC

b: góc EMO=góc EMH+góc OMH

=góc EHM+góc OCM

=90 độ-góc BAH+góc BCM=90 độ

=>EM là tiếp tuyến của (O)

1.Cho tam giác ABC vuông tại A (ab<AC) cso AH là đường cao. Biết BH=9cmHC=16cma. Tính AH,ACM số đo góc ABCB. Gọi M là trung điểm của BC đường vuông góc với BC tại M cắt đường thẳng AC và BA theo thứ tự E và F. Chứng minh BH.BF=MB.ABC. Gọi I là trung điểm của È.chứng minh IA là bán kính của đường tròn tâm I bán KÍNH IFD. Chứng minh MA là tiếp tuyến của đường tòn tâm Ibán kính IF2. Cho tam giấc ABC nội...
Đọc tiếp

1.Cho tam giác ABC vuông tại A (ab<AC) cso AH là đường cao. Biết BH=9cmHC=16cm
a. Tính AH,ACM số đo góc ABC
B. Gọi M là trung điểm của BC đường vuông góc với BC tại M cắt đường thẳng AC và BA theo thứ tự E và F. Chứng minh BH.BF=MB.AB
C. Gọi I là trung điểm của È.chứng minh IA là bán kính của đường tròn tâm I bán KÍNH IF
D. Chứng minh MA là tiếp tuyến của đường tòn tâm Ibán kính IF
2. Cho tam giấc ABC nội tiếp đường tròn (o) đườn kính BC. Vẽ dây AD của (o) vuông góc với đường kính BC tại H. Gọi M là trung điểm của cạnh AC.Từ M vẽ đường thẳng vuông góc với OC, đường thẳng này cắt OI tại N trên tia ON lấy điểm S sao cho N là trung điểm của cạnh OS
A. Chứng minh tam giác ABC vuông tại A và HA=HD
B. Chứng minh MN//SC và SC là tiếp tuyến của đường trong (O)
c. Gọi K là trung điểm của cạnh HC vẽ đương tròn đường lính AH cắt cạnh AK tại F chứng minh BH. HC= À. AK 
D. T rên tia đối của tia BA lấy điểm E sao hco B là trung điểm của cạnh AE chứng minh E,H,F thẳng hàng
GIÚP MÌNH VỚI!!!

1
18 tháng 12 2016

tớ ko biết

2 tháng 1 2018

J A B C O E D H K M N

a) Xét hai tam giác ABD và ACE có:

\(\widehat{A}\) chung

\(\widehat{ADB}=\widehat{AEC}=90^o\)

\(\Rightarrow\Delta ABD\sim\Delta ACE\left(g-g\right)\)

\(\Rightarrow\frac{AB}{AC}=\frac{AD}{AE}\Rightarrow AD.AC=AE.AB\)

b) Xét tam giác ABC có BD và CE là hai đường cao nên H là trực tâm. Vậy thì AH vuông góc với BC tại K.

c) Ta thấy AMO; AKO; ANO là các tam giác vuông có chung cạnh huyền AO nên A, M, K, O, N cùng thuộc đường tròn đường kính AO.

Khi đó \(\widehat{AKN}=\widehat{AMN}\)  (Hai góc nội tiếp cùng chắn cung AN)

Lại có AM = AN nên \(\widehat{AMN}=\widehat{ANM}\)

Suy ra \(\widehat{AKN}=\widehat{ANM}\)

d) Gọi J là giao điểm của MN với AO.

Xét tam giác vuông ANO, đường cao NJ, ta có:

\(AJ.AO=AN^2\)  (Hệ thức lượng)

Lại có \(\Delta AHJ\sim\Delta AOK\left(g-g\right)\Rightarrow\frac{AH}{AO}=\frac{AJ}{AK}\)

\(\Rightarrow AJ.AO=AH.AK\)

\(\Rightarrow AN^2=AH.AK\)

\(\Rightarrow\Delta AHN\sim\Delta ANK\left(c-g-c\right)\Rightarrow\widehat{ANH}=\widehat{AKN}\)

Mà \(\widehat{AKN}=\widehat{ANM}\Rightarrow\widehat{ANH}=\widehat{ANM}\) hay M, N, H thẳng hàng.

3 tháng 12 2019

Hoàng Thị Thu Huyền ơi ngộ nhận kìa. ý d đang chứng minh thẳng hàng mà bạn có 2 cái tam giác AHJ và AOK đồng dạng  (g g) thì sao được ??