Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AE\cdot AC=AF\cdot AB\)(ĐPCM)
b)
Ta có: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(cmt)
nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{FAE}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
a) Bạn hãy nhớ điều này: " 2 tam giác có đáy bằng nhau thì tỉ số diện tích = tỉ số 2 đường cao tương ứng 2 đáy, và 2 tam giác có 2 đường cao bằng nhau thì tỷ số diện tích = tỉ số 2 đáy tương ứng " - phần chứng minh xin nhường cho bạn vì nó không khó.
Áp dụng ta có: S(HDC)/S(ADC) = HD/AD (1). Chứng minh tương tự ta được S(BDH)/S(DAB) = HD/AD (2). Từ (1) và (2) => HD/AD = S(HDC)/S(ADC) = S(BDH)/S(DAB) = [ S(HDC) + S(BDH) ]/[ S(ADC) + S(DAB) ] = S(BHC)/S(ABC) (áp dụng tính chất dãy tỉ số bằng nhau)
=> HD/AD = S(BHC)/S(ABC) (3)
Chứng minh tương tự ta được:
HE/BE = S(AHC)/S(ABC) (4) và HF/CF = S(AHB)/S(ABC) (5)
Từ (3); (4) và (5) => HD/AD + HE/BE + HF/CF = S(BHC)/S(ABC) + S(AHC)/S(ABC) + S(AHB)/S(ABC) = [ S(BHC) + S(ACH) + S(ABH) ]/S(ABC) = S(ABC)/S(ABC) = 1
=> HD/AD + HE/BE + HF/CF = 1.
b) Ta chứng minh được ∆CHD ~ ∆CBF(g.g) - bạn tự chứng minh => CH/BC = CD/CF => CH.CF = BC.CD (6), chứng minh tương tự ta được: BH.BE = BC.DB (7). Từ (6) và (7) => BH.BE + CH.CF = BC.BD + BC.CD = BC(BD + CD) = BC²
c) Hãy nhớ lại kiến thức lớp 7: Trong 1 tam giác, 3 đường phân giác cắt nhau tại 1 điểm và điểm đó cách đều 3 cạnh của tam giác (điểm này gọi là tâm đường tròn nộ tiếp). Nối E -> F; E -> D ; D -> F. Ta sẽ chứng minh H là giao điểm 3 đường phân giác.
Ta chứng minh được ∆AFC ~ ∆AEB(g.g) => AF/AE = AC/AB => AF/AC = AE/AB. => ta chứng minh được ∆AEF ~ ∆ABC(c.g.c) => góc AEF = góc ABC, chứng minh tương tư ta được ∆CED ~ ∆CBA => góc CED = góc ABC => góc AEF = góc CED ( = góc ABC), ta có: góc FEB = 90º - góc AEF và góc BED = 90º - góc CED, mà góc AEF = góc CED => góc FEB = góc BED => BE là phân giác góc FED => EH là phân giác góc FED, chứng minh tương tự ta được DH là phân giác góc EDF và FH là phân giác góc EFD
=> đpcm
mình copy cho bạn lời giải đó
a, Xét \(\Delta ACF\) và \(\Delta ABE\) có:
\(\widehat{AFC}=\widehat{AEB}=90^0\)
\(\widehat{BAC}\) là góc chung
\(\Rightarrow\Delta ACF~\Delta ABE\left(g.g\right)\)
\(\Rightarrow\frac{AC}{AB}=\frac{AF}{AE}\)
\(\Rightarrow AC.AE=AB.AF\)
Xét \(\Delta AEF\) và \(\Delta ABC\) có:
\(\widehat{CAB}\) là góc chung
\(\frac{AE}{AB}=\frac{AF}{AC}\)
\(\Rightarrow\Delta AEF~\Delta ABC\left(c.g.c\right)\)
b, Xét \(\Delta BDH\) và \(\Delta BEC\) có:
\(\widehat{EBC}\) là góc chung
\(\widehat{BEC}=\widehat{BDH}=90^0\)
\(\Rightarrow\Delta BDH~\Delta BEC\left(g.g\right)\)
\(\Rightarrow\frac{BH}{BC}=\frac{BD}{BE}\)
\(\Rightarrow BE.BH=BC.BD\left(1\right)\)
Tương tự như trên ta được: \(\Delta CDH~\Delta CFB\left(g.g\right)\)
\(\Rightarrow\frac{CH}{CB}=\frac{CD}{CF}\)
\(\Rightarrow CF.CH=CD.CB\left(2\right)\)
Từ (1) và (2) \(\Rightarrow BE.BH+CH.CF=BD.BC+BC.CD=BC\left(BD.CD\right)=BC^2\)
\(\Rightarrow BH.BE+CH.CF=BC^2\)
d,EI _|_ AB ; CE _|_ AB => EI // CE => AI/IF = AE/EC (đl)
EK _|_ AD; CD _|_ AD => EK // CD => AK/KD = AE/EC (đl)
=> AI/IF = AK/KD; xét tam giac AFD
=> IK // FD (1)
ER _|_ BC; AD _|_ BC => ER // AD => CR/RD = CE/EA (đl)
EQ _|_ CF; AF _|_ CF => AH // AF => CH/FH = CE/AE (đl)
=> CR/RD = CH/FH; xét tam giác CFD
=> HR // FD (2)
EK _|_ AD; AD _|_ BD => EK // BD => KH/HD = EH/HB (đl)
EH _|_ CF; CF _|_ BF => EH // FB => EH/HB = QH/HF (đl)
=> KH/HD = QH/HF
=> KH // ED (3)
(1)(2)(3) => I;K;H;R thẳng hàng (tiên đề Ơclit)
*OLM đang lỗi nên không vẽ được hình, bạn vào thống kê mình để xem hình nhé! Mình vẽ ở GeoGebra*
a \(\hept{\begin{cases}S_{BHC}=\frac{1}{2}\cdot BC\cdot HD\\S_{ABC}=\frac{1}{2}\cdot BC\cdot AD\end{cases}}\Rightarrow\frac{HD}{AD}=\frac{S_{BHC}}{S_{ABC}}\)
Tương tự cũng có: \(\hept{\begin{cases}\frac{HE}{BE}=\frac{S_{AHC}}{S_{ABC}}\\\frac{HF}{CF}=\frac{S_{AHB}}{S_{ABC}}\end{cases}}\)
\(\Rightarrow\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=\frac{S_{BHC}}{S_{ABC}}+\frac{S_{AHC}}{S_{ABC}}+\frac{S_{AHB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)
b) Xét \(\Delta BHD\) và \(\Delta BCE\)có:
\(\widehat{B}\)chung
\(\widehat{BDH}=\widehat{BEC}=90^o\)
=> \(\Delta BHD\)đồng dạng với \(\Delta\)BEC (g.g)
=> \(\frac{BH}{BC}=\frac{BD}{BE}\Rightarrow BH\cdot BE=BC\cdot BD\left(1\right)\)
Cmtt: \(\Delta CHD\)đồng dạng \(\Delta CBF\)(g.g)
=> \(\frac{CH}{CB}=\frac{CD}{CF}\Rightarrow CH\cdot CF=CB\cdot CD\left(2\right)\)
Từ (1) (2) => \(CH\cdot CF+BH\cdot BE=BC\cdot BD+CD\cdot CB=BC^2\)
c) \(\widehat{HDC}=\widehat{HEC}=90^o\)
=> Tứ giác HDCE nội tiếp
=> \(\widehat{HED}=\widehat{HCD}\)(3)
\(\widehat{AFH\:}=\widehat{AEH}=90^o\)
=> AFHE nội tiếp
=> \(\widehat{FEH}=\widehat{FAH}\left(4\right)\)
Mà \(\widehat{FAH}=\widehat{HCD}\) (cùng phụ \(\widehat{ABC}\)) (5)
(3)(4)(5)=> \(\widehat{FEH}=\widehat{HED}\)
=> EH là phân giác \(\widehat{FED}\)
Cmtt cũng được: DH là phân giác \(\widehat{FDE}\)và FH là phân giác \(\widehat{DFE}\)
=> H là tâm đường tròn nội tiếp tam giác EFD
=> H cách đều EF; FD; ED
d) Gọi O là giao của phân giác \(\widehat{BHC}\)và trung trực của CH. Theo gt thì điểm O cố đnhj
Ta có: OH=OC => \(\Delta\)HOC cân tại O => \(\widehat{CHO}=\widehat{HCO}\)
Mà \(\widehat{BHO}=\widehat{CHO}\)nên \(\widehat{MHO}=\widehat{NCO}\)
=> \(\Delta OMH=\Delta ONC\left(cgc\right)\)
=> OM=ON
=> O thuộc đường trung trực của MN, hay đường trung trực của MN luôn đi qua 1 điểm cố định
@qu y nh Bạn có thể làm ý c theo cách khác giúp mk đc không ạ!!! Mk chưa học tứ giác nội tiếp(Nội dung lớp 9)
A B C D E F H I K
ngonhuminh ơi