K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AE\cdot AC=AF\cdot AB\)(ĐPCM)

b)

Ta có: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(cmt)

nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

loading...  loading...  loading...  

1: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF và AE/AB=AF/AC

2: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc FAE chung

=>ΔAEF đồng dạng vơi ΔABC

3: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng với ΔHEC

=>HF/HE=HB/HC

=>HF/HB=HE/HC

Xét ΔHFE và ΔHBC có

HF/HB=HE/HC

góc FHE=góc BHC

=>ΔFHE đồng dạng với ΔBHC

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

=>ΔABE đồng dạng với ΔACF

=>AB/AC=AE/AF

=>AE/AB=AF/AC và AE*AC=AB*AF

b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc A chung

=>ΔAEF đồng dạng với ΔABC

=>góc AEF=góc ACB

c; góc AFH=góc AEH=90 độ

=>AFHE nội tiếp (I)

=>IF=IE

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp (M)

=>MF=ME

=>MI là trung trực của EF

=>MI vuông góc EF

27 tháng 4 2017

A B C D E F H I K

27 tháng 4 2017

ngonhuminh ơi

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB∼ΔAFC(g-g)

b) Ta có: ΔAEB∼ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔAEF∼ΔABC(c-g-c)

11 tháng 3 2019

A B C E F H I

Giải

a) Xét \(\Delta BHF\) và \(\Delta CHE\) có:

\(\widehat{BHF}=\widehat{CHE}\) (vì đối đỉnh)

\(\widehat{BFH}=\widehat{CEH}=90^o\)

=> \(\Delta BHF\)  s  \(\Delta CHE\) (g - g)

b) Xét \(\Delta ABE\) và \(\Delta ACF\) có:

\(\widehat{A}\) là góc chung

\(\widehat{AEB}=\widehat{AFC}=90^o\)

=> \(\Delta ABE\)  s  \(\Delta ACF\) (g - g)

=> \(\frac{AB}{AC}=\frac{AE}{AF}\)

=> AF . AB = AE . AC

c) Xét \(\Delta AEF\) và \(\Delta ABC\) có:

\(\widehat{A}\) là góc chung

\(\frac{AE}{AB}=\frac{AF}{AC}\) (vì \(\Delta ABE\) s \(\Delta ACF\)

=> \(\Delta AEF\)s \(\Delta ABC\) (c - g - c)

d) Câu d mình không nghĩ ra. Bạn tự làm nha, chắc là xét tam giác đồng dạng rồi suy ra hai góc bằng nhau và sẽ suy ra đường phân giác đó.