K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2022

-Xét △BCF và △BAD có:

\(\widehat{ABC}\) là góc chung

\(\widehat{BFC}=\widehat{BDA}=90^0\)

\(\Rightarrow\)△BCF∼△BAD (g-g).

\(\Rightarrow\dfrac{BC}{BA}=\dfrac{BF}{BD}\) (tỉ số đồng dạng)

\(\Rightarrow BF.BA=BC.BD\left(1\right)\)

-Xét △ACD và △BCE có:

\(\widehat{ACB}\) là góc chung

\(\widehat{ADC}=\widehat{BEC}=90^0\)

\(\Rightarrow\)△ACD∼△BCE (g-g)

\(\Rightarrow\dfrac{AC}{BC}=\dfrac{CD}{CE}\) (tỉ số đồng dạng)

\(\Rightarrow CE.CA=CD.BC\left(2\right)\)

-Từ (1) và (2) suy ra:

\(BF.BA+CE.CA=BD.BC+CD.BC=BC\left(BD+CD\right)=BC.BC=BC^2\)

 

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F cóc

góc EAB chung

Do đó:ΔAEB\(\sim\)ΔAFC

Suy ra: AE/AF=AB/AC

hay \(AE\cdot AC=AF\cdot AB\)

b: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

góc HBD chung

Do đó:ΔBDH\(\sim\)ΔBEC

Suy ra: BD/BE=BH/BC

hay \(BD\cdot BC=BH\cdot BE\)

29 tháng 4 2020

+) Câu d sửa đề thành BF . BA + CE . CA = BC2

a, Xét △AFH vuông tại F và △ADB vuông tại D

Có: FAH là góc chung

=> △AFH ᔕ △ADB (g.g)

b, Vì △AFH ᔕ △ADB (cmt) \(\Rightarrow\frac{AF}{AD}=\frac{AH}{AB}\)\(\Rightarrow\frac{AB}{AD}=\frac{AH}{AF}\)

Xét △ABH và △ADF

Có: \(\frac{AB}{AD}=\frac{AH}{AF}\)(cmt)

        BAH là góc chung

=> △ABH ᔕ △ADF (c.g.c)

c, Xét △HFB vuông tại F và △HEC vuông tại E

Có: FHB = EHC (2 góc đối đỉnh)

=> △HFB ᔕ △HEC (g.g)

\(\Rightarrow\frac{HF}{HE}=\frac{HB}{HC}\)

=> HF . HC = HE . HB  

d, Sửa đề thành BF . BA + CE . CA = BC2

Xét △HEC vuông tại E và △AFC vuông tại F

Có: HCE là góc chung

=> △HEC ᔕ △AFC (g.g)

\(\Rightarrow\frac{EC}{FC}=\frac{HC}{AC}\)

=> FC . HC = EC . AC  (1)

Xét △HFB vuông tại F và △AEB vuông tại E

Có: FBH là góc chung

=> △HFB ᔕ △AEB (g.g)

\(\Rightarrow\frac{FB}{EB}=\frac{HB}{AB}\)

=> FB . AB = EB . HB  (2)

Xét △BFC vuông tại F và △HDC vuông tại D

Có: HCD là góc chung

=> △BFC ᔕ △HDC (g.g)

\(\Rightarrow\frac{FC}{DC}=\frac{BC}{HC}\)

=> FC . HC = BC . DC (3)

Xét △BEC vuông tại E và △BDH vuông tại D

Có: HBD là góc chung

=> △BEC ᔕ △BDH (g.g)

\(\Rightarrow\frac{BC}{BH}=\frac{BE}{DB}\)

=> BC . DB = BE . BH (4)

Từ (1) và (3) => EC . AC = BC . DC

Từ (2) và (4) => FB . AB = BC . DB 

Ta có: BF . BA + CE . CA = BC . BD + BC . DC = BC . (BD + DC) = BC . BC = BC2

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

Do đó: ΔABE\(\sim\)ΔACF

Suy ra: AB/AC=AE/AF

hay \(AB\cdot AF=AC\cdot AE\)

b: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

góc DBH chung

Do đó: ΔBDH\(\sim\)ΔBEC
Suy ra: BD/BE=BH/BC

hay \(BD\cdot BC=BH\cdot BE\)

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AE\cdot AC=AF\cdot AB\)(ĐPCM)

b)

Ta có: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(cmt)

nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

23 tháng 3 2022

thoi làm cho có 1 sự lạc đề nhẹ :))