K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2017

 a) tg AEB đồng dạng tg AFC 
=>^ABE=^ ACF 
hay ^FBH=^ECH 
tg FHB và tg EHC c ó 
-^FBH=^ECH 
-^FHB=^EHC 
=> tg FHB và tg EHC đồng dạng 
=>FH/EH=HB/HC 
tg FHE và tg BHC có 
- FH/EH=HB/HC 
-^FHE=^BHC(2 g óc đối đỉnh) 
=> tg FHE và tg BHC đồng dạng 
tg ABD và CBF có 
-^ADB=^CFB(=90 độ) 
-^ABD=^CBF 
=> tg ABD và CBF đồng dạng 
=>AB/BC=BD/BF 
=>BF.AB=BC.BD 
Tương tự chứng minh:CE.CA=CD.BC 

=> BF.AB+CE.CA =BC.BD+CD.BC=BC(BD.CD)=BC^2

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

5 tháng 1 2022

ANH CS THỂ THAM KHẢO 

a , b tự lm nha ( dễ mà )

c) Do II đối xứng với HH qua BC⇒IH⊥BCBC⇒IH⊥BC mà HD⊥BC,D∈BC

⇒I⇒I đối xứng với HH qua D⇒DD⇒D là trung điểm của HIHI

Và MM là trung điểm của HKHK

⇒DM⇒DM là đường trung bình ΔHIKΔHIK

⇒DM∥IK⇒DM∥IK

⇒BC∥IK⇒BC∥IK

⇒BCKI⇒BCKI là hình thang

ΔCHIΔCHI có CDCD vừa là đường cao vừa là đường trung tuyến

⇒ΔCHI⇒ΔCHI cân đỉnh CC

⇒CI=CH⇒CI=CH (*)

Mà tứ giác BHCKBHCK là hình bình hành ⇒CH=BK⇒CH=BK (**)

Từ (*) và (**) suy ra CI=BKCI=BK

Tứ giác BCKIBCKI là hình bình hành có 2 đường chéo CI=BKCI=BK

Suy ra BCIKBCIK là hình thang cân.

Tứ giác HGKCHGKC có GK∥HCGK∥HC (do BHCKBHCK là hình bình hành)

⇒HGKC⇒HGKC là hình thang có đáy là GK∥HCGK∥HC

22 tháng 11 2022

a: Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>BD//CH

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>CD//BH

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

b: BHCD là hình bình hành

nên BC cắt HD tại trung điểm của mỗi đường

=>I là trung điểm của HD

Xét ΔDAH có DI/DH=DO/DA

nen Io//AH và IO=AH/2

=>AH=2OI