K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2015

 

ABCHbc

Trong tam giác vuông ACH có AC2 = AH2 + CH2 = AH2 + (BC - BH)= AH2 + BC2 - 2.BC.BH + BH2

Trong tam giác vuông ABH có AH2 + BH2 = AB2 và BH = AB.cosB hay BH = c.cosB

Suy ra AC2 = BC2 + AB2 - 2BC.c.cosB hay b2 = a2 + c2 - 2ac.cosB

 
27 tháng 6 2021

từ B kẻ đường thẳng vuông góc với AC tại k

ta có: 2.AK.b=AK.b+AK.b           

=AK.(AK+CK)+(b-CK).b

=AK^2+AK.CK+b^2-b.CK

=c^2-BK^2+b^2-CK.(b-AK)

=c^2-(a^2-CK^2)+b^2-CK.CK

=c^2-a^2+CK^2+b^2-CK^2

=b^2+c^2-a^2

mà: cosA=AK/c=2.AK.b/2bc

=(b^2+c^2-a^2)/2bc

=>b^2+c^2-a^2=2bc.cosA (đpcm)

 

27 tháng 6 2021

hay phết

26 tháng 5 2017

D A C B b c a b/2

Ta có: \(\widehat{CAB}=120^o\Rightarrow\widehat{CAD}=60^o\)

\(\Rightarrow\Delta DAC\) là nửa tam giác đều.

\(\Rightarrow AD=\frac{AC}{2}=\frac{b}{2}\)

Xét \(\Delta CDB\) vuông tại D có:

\(CB^2=CD^2+DB^2=\left(AC^2-AD^2\right)+\left(AD+AB\right)^2\)

\(\Leftrightarrow CB^2=AC^2-AD^2+AD^2+2AD.AB+AB^2=AC^2+2AB.\frac{AC}{2}+AB^2\)

\(\Leftrightarrow a^2=b^2+c^2+bc\)

AH
Akai Haruma
Giáo viên
13 tháng 10 2018

Lời giải:

Kẻ \(BH\perp AC\)

Theo công thức lượng giác:

\(\frac{BH}{AB}=\sin A; \frac{AH}{AB}=\cos A\Rightarrow BH=\sin A. AB=c\sin A; AH=\cos A.AB=c\cos A\)

\(\Rightarrow CH=AC-AH=b-c\cos A\)

Do đó áp dụng định lý Pitago:

\(BC^2=BH^2+CH^2\)

\(\Leftrightarrow a^2=(c\sin A)^2+(b-c\cos A)^2\)

\(\Leftrightarrow a^2=c^2\sin ^2A+b^2+c^2\cos ^2A-2bc\cos A\)

\(\Leftrightarrow a^2=c^2(\sin ^2A+\cos ^2A)+b^2-2bc\cos A\)

\(\Leftrightarrow a^2=c^2+b^2-2bc\cos A\)

Ta có đpcm.

Kẻ đường cao AH

Xét \(\Delta ABH\) vuông tại H có :

\(\left\{{}\begin{matrix}AB^2=AH^2+BH^2\\BH=AB.cosB\end{matrix}\right.\)

Xét \(\Delta ACH\) vuông tại H

=> \(AC^2=AH^2+HC^2=AH^2+\left(BC-BH\right)^2=AH^2+BC^2+BH^2-2BC.BH\)

\(\left\{{}\begin{matrix}AB^2=AH^2+BH^2\\BH=AB.cosB\end{matrix}\right.\)

=> \(AC^2=AB^2+BC^2-2BC.AB.cosB\) (đpcm )

5 tháng 10 2019

A C B H

Kẻ AH\(\perp\)BC

Áp dụng ht vào tam giác AHB vuông có:

\(cosB=\frac{BH}{AB}\)

=> 2AB.BC.cosB=\(2.AB.BC.\frac{BH}{AB}\)

=>2AB.BC.cosB=2BC.BH

Áp dụng đ/lý py-ta-go vào các tam giác vuông ABH và AHC có:

\(AB^2=AH^2+BH^2\)

\(AC^2=AH^2+HC^2\)

\(AB^2+BC^2-2AC.BC.cosB=AH^2+BH^2+\left(BH+HC\right)^2-2BC.BH\)

=\(AH^2+BH^2+BH^2+2BH.HC+HC^2-2BC.BH\)

=\(AH^2+2BH^2+HC^2-2BH\left(BC-HC\right)\)

=\(AH^2+HC^2+2BH^2-2BH^2\)

=\(AH^2+HC^2\)

=\(AC^2\)

14 tháng 7 2016

đây là định lý cosin lớp 10

a2 = b2+c2 - 2bccosa

b2 = a2+c2 - 2accosb

c2 = a2+b2 -2abcosc