Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai trả lời hộ điiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinhanh lênnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
A B C D O M N E I H P
a) Ta có: DE là tiếp tuyến của (O) nên ^ODE=900 . Mà OH vuông góc BE
=> ^OHE=900 => ^ODE=^OHE.
Xét tứ giác OHDE: ^OHE=^ODE=900 => Tứ giác OHDE nội tiếp đường tròn. (đpcm).
b) Dễ thấy ^EDC=^EBD (T/c góc tạo bởi tiếp tuyến và dây cung)
=> \(\Delta\)ECD ~ \(\Delta\)EDB (g.g) => \(\frac{ED}{EB}=\frac{EC}{ED}\Rightarrow ED^2=EC.EB.\)(đpcm).
c) Tứ giác OHDE nội tiếp đường tròn (cmt) => ^OEH=^ODH.
Lại có: CI//OE => ^OEH=^ICH => ^ICH=^ODH hay ^ICH=^IDH
=> Tứ giác HICD nội tiếp đường tròn => ^HID=^HCD=^BCD
Do tứ giác ABDC nội tiếp (O) => ^BCD=^BAD.
Do đó ^HID=^BAD. Mà 2 góc bên ở vị trí đồng vị => HI//AB (đpcm).
d) Gọi giao điểm của tia CI với AB là P.
Ta thấy: Đường tròn (O) có dây cung BC và OH vuông góc BC tại H => H là trung điểm BC.
Xét \(\Delta\)BPC: H là trung điểm BC; HI//BP (HI//AB); I thuộc CP => I là trung điểm CP => IC=IP (1)
Theo hệ quả của ĐL Thales; ta có: \(\frac{IP}{DM}=\frac{AI}{AD};\frac{IC}{DN}=\frac{AD}{AI}\Rightarrow\frac{IP}{DM}=\frac{IC}{DN}\)(2)
Từ (1) và (2) => DM=DN (đpcm).
a) Chứng minh ΔABF ~ ΔACE
\(\odot\) Ta có: FA = FB (F ∈ đường trung trực của AB)
⇒ ΔFAB cân tại F
Tương tự, ta cũng có ΔEAC cân tại E
\(\odot\) Mặt khác:
\(\widehat{FBA}=\widehat{BAD}\) (AD // BF, 2 góc so le trong)
\(\widehat{BAD}=\widehat{CAD}\) (AD là tia phân giác của \(\widehat{BAC}\))
\(\widehat{CAD}=\widehat{ECA}\) (AD // CE, 2 góc so le trong)
\(\Rightarrow\widehat{FBA}=\widehat{ECA}\)
\(\odot\) Suy ra ΔFAB cân tại F và ΔEAC cân tại E có \(\widehat{FBA}=\widehat{ECA}\)
⇒ ΔFAB ~ ΔEAC
b) Chứng minh AD, BE, CF đồng quy
\(\odot\) Gọi G là giao điểm của BE và CF. Ta sẽ chứng minh A, G, D thẳng hàng.
\(\odot\) Theo định lí Thales: BF // EC (do cùng song song với AD)
\(\Rightarrow\dfrac{FG}{GC}=\dfrac{BF}{CE}\)
\(\odot\) Mà:
\(\dfrac{BF}{CE}=\dfrac{AB}{AC}\) (ΔFAB ~ ΔEAC)
\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\) (AD là đường phân giác của ΔABC)
\(\odot\) Suy ra \(\dfrac{FG}{GC}=\dfrac{BD}{CD}\)
Theo định lí Thales đảo ⇒ GD // BF
mà AD // BF (gt) nên \(AD\equiv GD\)
⇒ A, G, D thẳng hàng
⇒ đpcm
c) Chứng minh A, P, G, Q, F đồng viên
\(\odot\) Ta có: \(\widehat{FAG}=\widehat{EAG}\)
mà \(\widehat{EAG}=\widehat{QGA}\) (2 góc so le trong, QG // AE)
\(\Rightarrow\widehat{FAG}=\widehat{QGA}\)
mà FAGQ là hình thang
⇒ FAGQ là hình thang cân
⇒ FAGQ nội tiếp (1)
\(\odot\) Mặt khác: ECGP nội tiếp
\(\Rightarrow\widehat{CEP}=\widehat{PGF}\) (cùng bù \(\widehat{PGC}\))
mà \(\widehat{CEP}=\widehat{FQP}\) (2 góc so le trong, BF // CE)
\(\Rightarrow\widehat{PGF}=\widehat{FQP}\)
⇒ FQGP nội tiếp (2)
\(\odot\) Từ (1) và (2) ⇒ Ngũ giác AFQGP nội tiếp
⇒ đpcm