Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
mà OB=OC
nên AO là đường trungtrực của BC
b: Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
=>BC\(\perp\)CD
=>CD//OA
c: Xét (O) có
ΔBED nộitiếp
BD là đường kính
Do đó: ΔBED vuông tại E
Xét ΔBAD vuông tại B có BE là đường cao
nên \(AE\cdot AD=AB^2\left(1\right)\)
Xét ΔAOB vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(2\right)\)
Từ (1)và (2) suy ra \(AE\cdot AD=AH\cdot AO\)
a)a) Theo tính chất hai tiếp tuyến cắt nhau ta có:
+ ABAB là tia phân giác của góc HADHAD
Suy ra: ˆDAB=ˆBAHDAB^=BAH^
+ ACAC là tia phân giác của góc HAEHAE
Suy ra: ˆHAC=ˆCAEHAC^=CAE^
Ta có: ˆHAD+ˆHAE=2(ˆBAH+ˆHAC)HAD^+HAE^=2(BAH^+HAC^)=2.ˆBAC=2.90∘=180∘=2.BAC^=2.90∘=180∘
Vậy ba điểm D,A,ED,A,E thẳng hàng.
b)b) Gọi MM là trung điểm của BCBC
Theo tính chất của tiếp tuyến, ta có: AD⊥BD;AE⊥CEAD⊥BD;AE⊥CE
Suy ra: BD//CEBD//CE
Vậy tứ giác BDECBDEC là hình thang.
Vì MM là trung điểm của BCBC và AA là trung điểm của DEDE (vì DE là đường kính đường tròn (A))
Nên MAMA là đường trung bình của hình thang BDECBDEC
Suy ra: MA//BD⇒MA⊥DEMA//BD⇒MA⊥DE (vì BD⊥DEBD⊥DE)
Trong tam giác vuông ABCABC có AM là đường trung tuyến nên ta có: MA=MB=MC=BC2MA=MB=MC=BC2
Suy ra MM là tâm đường tròn đường kính BCBC với MAMA là bán kính
Vậy DEDE là tiếp tuyến của đường tròn tâm MM đường kính BC.